Learn R Programming

ssa: Simultaneous Signal Analysis

Procedures for analyzing simultaneous signals, e.g., features that are simultaneously significant in two different studies. Includes methods for detecting simultaneous signals, for identifying them under false discovery rate control, and for leveraging them to improve prediction.

Copy Link

Version

Install

install.packages('ssa')

Monthly Downloads

6

Version

1.3.0

License

GPL-3

Maintainer

Dave Zhao

Last Published

January 14th, 2019

Functions in ssa (1.3.0)

neb.train

Nonparametric empirical Bayes classifier without annotations; training
nebula.bin.train

Nonparametric empirical Bayes classifier using latent annotations: binary indicators; training
logit

Logit function
ldd

Latent dependency detection
nfsdr2

Nonparametric false simultaneous discovery rate control, two thresholds
maxtest

Max test for detecting simultaneous signals
nebula.chisq.bin.predict

Nonparametric empirical Bayes classifier using latent annotations: chi-square test statistics and binary indicators; prediction
nfsdr2_all

Nonparametric false simultaneous discovery rate control, two thresholds -- report all thresholds
prs.predict

Polygenic risk score; prediction
nebula.chisq.bin.train

Nonparametric empirical Bayes classifier using latent annotations: chi-square test statistics and binary indicators; training
prs.predict.cv

Polygenic risk score; prediction for classifier trained with CV
neb.predict

Nonparametric empirical Bayes classifier without annotations; prediction
nebula.chisq.train

Nonparametric empirical Bayes classifier using latent annotations: chi-square test statistics; training
nebula.chisq.predict

Nonparametric empirical Bayes classifier using latent annotations: chi-square test statistics; prediction
nebula.predict

Nonparametric empirical Bayes classifier using latent annotations: wrapper function; predict
tri.npmle

Trivariate NPMLE
prs.train.cv

Polygenic risk score (given only allele frequencies); training with CV
prs.train

Polygenic risk score (given only allele frequencies); training
uni.npmle

Univariate NPMLE
nebula.train

Nonparametric empirical Bayes classifier using latent annotations: wrapper function; training
nfsdr

Nonparametric false simultaneous discovery rate control
nebula.bin.predict

Nonparametric empirical Bayes classifier using latent annotations: binary indicators; prediction
bi.npmle

Bivariate NPMLE
expit

Expit function