# This example is part of TriTraining demo.
# Use demo(TriTraining) to see all the examples.
## Load Wine data set
data(wine)
x <- wine[, -14] # instances without classes
y <- wine[, 14] # the classes
x <- scale(x) # scale the attributes
## Prepare data
set.seed(20)
# Use 50% of instances for training
tra.idx <- sample(x = length(y), size = ceiling(length(y) * 0.5))
xtrain <- x[tra.idx,] # training instances
ytrain <- y[tra.idx] # classes of training instances
# Use 70% of train instances as unlabeled set
tra.na.idx <- sample(x = length(tra.idx), size = ceiling(length(tra.idx) * 0.7))
ytrain[tra.na.idx] <- NA # remove class information of unlabeled instances
# Use the other 50% of instances for inductive testing
tst.idx <- setdiff(1:length(y), tra.idx)
xitest <- x[tst.idx,] # testing instances
yitest <- y[tst.idx] # classes of testing instances
## Example: Using the Euclidean distance in proxy package.
m <- triTraining(xtrain, ytrain, dist = "Euclidean")
pred <- predict(m, xitest)
caret::confusionMatrix(table(pred, yitest))
Run the code above in your browser using DataLab