powered by
Probability density, cumulative distribution, inverse cumulative distribution, random sample and starting values functions.
dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE)plnorm(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)qlnorm(p, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)rlnorm(n, meanlog = 0, sdlog = 1)slnorm(x)
plnorm(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
qlnorm(p, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
rlnorm(n, meanlog = 0, sdlog = 1)
slnorm(x)
A numeric vector of values.
mean on log scale parameter.
standard deviation on log scale parameter.
logical; if TRUE, probabilities p are given as log(p).
vector of quantiles.
logical; if TRUE (default), probabilities are P[X <= x],otherwise, P[X > x].
P[X <= x]
P[X > x]
vector of probabilities.
number of observations.
A numeric vector.
stats::dlnorm()
# NOT RUN { x <- seq(0.01, 5, by = 0.01) plot(x, dlnorm(x), type = "l") # }
Run the code above in your browser using DataLab