Learn R Programming

ssdtools (version 0.3.7)

lnorm: Log-Normal Distribution

Description

Probability density, cumulative distribution, inverse cumulative distribution, random sample and starting values functions.

Usage

dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE)

plnorm(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)

qlnorm(p, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)

rlnorm(n, meanlog = 0, sdlog = 1)

slnorm(x)

Arguments

x

A numeric vector of values.

meanlog

mean on log scale parameter.

sdlog

standard deviation on log scale parameter.

log

logical; if TRUE, probabilities p are given as log(p).

q

vector of quantiles.

lower.tail

logical; if TRUE (default), probabilities are P[X <= x],otherwise, P[X > x].

log.p

logical; if TRUE, probabilities p are given as log(p).

p

vector of probabilities.

n

number of observations.

Value

A numeric vector.

See Also

stats::dlnorm()

Examples

Run this code
# NOT RUN {
x <- seq(0.01, 5, by = 0.01)
plot(x, dlnorm(x), type = "l")
# }

Run the code above in your browser using DataLab