Parameter Descriptions for ssdtools Functions
Unused.
The value to add to the label x values (before multiplying by shift_x
).
A flag specifying whether to also return transformed parameters.
A flag specifying whether all the named distributions must fit successfully.
A flag specifying whether a model with one or more parameters at the boundary should be considered to have converged (default = FALSE).
A flag specifying whether to provide model averaged values as opposed to a value for each distribution.
A flag or NULL specifying whether to only include distributions in the set that is approved by BC, Canada, Australia and New Zealand for official guidelines.
A string specifying used between every 3 digits to separate thousands on the x-axis.
A character vector
A named non-negative numeric vector of the left and right bounds for uncensored missing (0 and Inf) data in terms of the orders of magnitude relative to the extremes for non-missing values.
A flag specifying whether to check the arguments.
A flag specifying whether to estimate confidence intervals (by bootstrapping).
A numeric vector of the left and right censoring values.
A string of the column in data for the color aesthetic.
A flag specifying whether to only return fits with numerically computable standard errors.
A numeric vector of concentrations to calculate the hazard proportions for.
A list of control parameters passed to stats::optim()
.
A data frame.
A non-negative number specifying the maximum absolute AIC difference cutoff. Distributions with an absolute AIC difference greater than delta are excluded from the calculations.
A whole number specifying the number of significant figures.
A character vector of the distribution names.
An object of class fitdists.
A value between 0 and 1 indicating the proportion hazard concentration (or NULL).
A number of the hazard concentration value to offset.
A string of the column in data with the labels.
A number for the size of the labels.
A string of the column in data with the concentrations.
A number between 0 and 1 of the confidence level of the interval.
A string of the column in pred to use for the line color.
A string of the column in pred to use for the linetype.
location parameter on the log scale.
location parameter.
location on the log scale parameter.
locationlog1 parameter.
locationlog2 parameter.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE, probabilities p are given as log(p).
scale parameter on the log scale.
shape parameter on the log scale.
shape1 parameter on the log scale.
shape2 parameter on the log scale.
logical; if TRUE (default), probabilities are P[X <= x]
, otherwise, P[X > x]
.
mean on log scale parameter.
mean on log scale parameter.
mean on log scale parameter.
A number between 0 and 1 of the minimum proportion of bootstrap samples that must successfully fit (return a likelihood) to report the confidence intervals.
A number between 0 and 0.5 specifying the minimum proportion in mixture models.
A whole numeric vector specifying which distributions to include based on the number of parameters.
A flag specifying whether to calculate estimates for all implemented distributions.
A string specifying which method to use for estimating the bootstrap values. Possible values are "multi_free" and "multi_fixed" which treat the distributions as constituting a single distribution but differ in whether the model weights are fixed and "weighted_samples" and "weighted_arithmetic" take bootstrap samples from each distribution proportional to its weight versus calculating the weighted arithmetic means of the lower and upper confidence limits.
A flag specifying whether to treat the distributions as constituting a single distribution (as opposed to taking the mean) when calculating model averaged estimates.
A flag specifying whether to silently remove missing values or remove them with a warning.
positive number of observations.
A count of the number of bootstrap samples to use to estimate the confidence limits. A value of 10,000 is recommended for official guidelines.
A positive whole number of the minimum number of non-missing rows.
A positive whole number of the number of simulations to generate.
The object.
A flag specifying whether to perform parametric bootstrapping as opposed to non-parametrically resampling the original data with replacement.
vector of probabilities.
A numeric vector of percent values to estimate hazard concentrations for. Deprecated for proportion = 0.05
.
Proportion mixture parameter.
A numeric vector of proportion values to estimate hazard concentrations for.
A flag specifying whether to return p-values or the statistics (default) for the various tests.
A data frame of the predictions.
vector of quantiles.
A numeric vector of length two of the lower and upper bounds for the shape1 parameter.
shape2 parameter.
A flag specifying whether to reweight weights by dividing by the largest weight.
A flag specifying whether to rescale concentration values by dividing by the geometric mean of the minimum and maximum positive finite values.
A flag indicating whether to plot the confidence interval as a grey ribbon as opposed to green solid lines.
A string of the column in data with the right concentration values.
NULL or a string specifying a directory to save where the bootstrap datasets and parameter estimates (when successfully converged) to.
A flag specfying whether to include a numeric vector of the bootstrap samples as a list column in the output.
scale parameter.
scalelog1 parameter.
scalelog2 parameter.
scale on log scale parameter.
standard deviation on log scale parameter.
standard deviation on log scale parameter.
standard deviation on log scale parameter.
A character vector of the distributions to select.
shape parameter.
shape1 parameter.
shape2 parameter.
The value to multiply the label x values by (after adding add_x
).
A flag indicating whether fits should fail silently.
A number for the size of the labels. Deprecated for label_size
. #'
Additional text to display after the number on the y-axis.
A flag or NULL specifying whether to only include distributions with both tails.
A number for the text size.
A flag specifying whether to use the classic theme or the default.
A string of which transformation to use. Accepted values include "log10"
, "log"
, and "identity"
("log10"
by default).
A flag or NULL specifying whether to include distributions with valid likelihoods that allows them to be fit with other distributions for modeling averaging.
A string of the numeric column in data with positive weights less than or equal to 1,000 or NULL.
The object.
The x-axis breaks as one of:
NULL
for no breaks
waiver()
for the default breaks
A numeric vector of positions
The x-axis limits as one of:
NULL
to use the default scale range
A numeric vector of length two providing the limits. Use NA to refer to the existing minimum or maximum limits.
The x-value for the intersect.
A string of the x-axis label.
The y-value for the intersect.
A string of the x-axis label.
weight parameter for the Burr III distribution.
shape1 parameter for the Burr III distribution.
shape2 parameter for the Burr III distribution.
scale parameter for the Burr III distribution.
weight parameter for the gamma distribution.
shape parameter for the gamma distribution.
scale parameter for the gamma distribution.
weight parameter for the Gompertz distribution.
location parameter for the Gompertz distribution.
shape parameter for the Gompertz distribution.
weight parameter for the inverse Pareto distribution.
shape parameter for the inverse Pareto distribution.
scale parameter for the inverse Pareto distribution.
weight parameter for the log-Gumbel distribution.
location parameter for the log-Gumbel distribution.
scale parameter for the log-Gumbel distribution.
weight parameter for the log-logistic distribution.
location parameter for the log-logistic distribution.
scale parameter for the log-logistic distribution.
weight parameter for the log-logistic log-logistic mixture distribution.
locationlog1 parameter for the log-logistic log-logistic mixture distribution.
scalelog1 parameter for the log-logistic log-logistic mixture distribution.
locationlog2 parameter for the log-logistic log-logistic mixture distribution.
scalelog2 parameter for the log-logistic log-logistic mixture distribution.
pmix parameter for the log-logistic log-logistic mixture distribution.
weight parameter for the log-normal distribution.
meanlog parameter for the log-normal distribution.
sdlog parameter for the log-normal distribution.
weight parameter for the log-normal log-normal mixture distribution.
meanlog1 parameter for the log-normal log-normal mixture distribution.
sdlog1 parameter for the log-normal log-normal mixture distribution.
meanlog2 parameter for the log-normal log-normal mixture distribution.
sdlog2 parameter for the log-normal log-normal mixture distribution.
pmix parameter for the log-normal log-normal mixture distribution.
weight parameter for the Weibull distribution.
shape parameter for the Weibull distribution.
scale parameter for the Weibull distribution.