Random Number Generation
ssd_rburrIII3(n, shape1 = 1, shape2 = 1, scale = 1, chk = TRUE)ssd_rgamma(n, shape = 1, scale = 1, chk = TRUE)
ssd_rgompertz(n, location = 1, shape = 1, chk = TRUE)
ssd_rinvpareto(n, shape = 3, scale = 1, chk = TRUE)
ssd_rlgumbel(n, locationlog = 0, scalelog = 1, chk = TRUE)
ssd_rllogis_llogis(
n,
locationlog1 = 0,
scalelog1 = 1,
locationlog2 = 1,
scalelog2 = 1,
pmix = 0.5,
chk = TRUE
)
ssd_rllogis(n, locationlog = 0, scalelog = 1, chk = TRUE)
ssd_rlnorm_lnorm(
n,
meanlog1 = 0,
sdlog1 = 1,
meanlog2 = 1,
sdlog2 = 1,
pmix = 0.5,
chk = TRUE
)
ssd_rlnorm(n, meanlog = 0, sdlog = 1, chk = TRUE)
ssd_rmulti(
n,
burrIII3.weight = 0,
burrIII3.shape1 = 1,
burrIII3.shape2 = 1,
burrIII3.scale = 1,
gamma.weight = 0,
gamma.shape = 1,
gamma.scale = 1,
gompertz.weight = 0,
gompertz.location = 1,
gompertz.shape = 1,
lgumbel.weight = 0,
lgumbel.locationlog = 0,
lgumbel.scalelog = 1,
llogis.weight = 0,
llogis.locationlog = 0,
llogis.scalelog = 1,
llogis_llogis.weight = 0,
llogis_llogis.locationlog1 = 0,
llogis_llogis.scalelog1 = 1,
llogis_llogis.locationlog2 = 1,
llogis_llogis.scalelog2 = 1,
llogis_llogis.pmix = 0.5,
lnorm.weight = 0,
lnorm.meanlog = 0,
lnorm.sdlog = 1,
lnorm_lnorm.weight = 0,
lnorm_lnorm.meanlog1 = 0,
lnorm_lnorm.sdlog1 = 1,
lnorm_lnorm.meanlog2 = 1,
lnorm_lnorm.sdlog2 = 1,
lnorm_lnorm.pmix = 0.5,
weibull.weight = 0,
weibull.shape = 1,
weibull.scale = 1,
chk = TRUE
)
ssd_rmulti_fitdists(n, fitdists, chk = TRUE)
ssd_rweibull(n, shape = 1, scale = 1, chk = TRUE)
positive number of observations.
shape1 parameter.
shape2 parameter.
scale parameter.
A flag specifying whether to check the arguments.
shape parameter.
location parameter.
location on the log scale parameter.
scale on log scale parameter.
locationlog1 parameter.
scalelog1 parameter.
locationlog2 parameter.
scalelog2 parameter.
Proportion mixture parameter.
mean on log scale parameter.
standard deviation on log scale parameter.
mean on log scale parameter.
standard deviation on log scale parameter.
mean on log scale parameter.
standard deviation on log scale parameter.
weight parameter for the Burr III distribution.
shape1 parameter for the Burr III distribution.
shape2 parameter for the Burr III distribution.
scale parameter for the Burr III distribution.
weight parameter for the gamma distribution.
shape parameter for the gamma distribution.
scale parameter for the gamma distribution.
weight parameter for the Gompertz distribution.
location parameter for the Gompertz distribution.
shape parameter for the Gompertz distribution.
weight parameter for the log-Gumbel distribution.
location parameter for the log-Gumbel distribution.
scale parameter for the log-Gumbel distribution.
weight parameter for the log-logistic distribution.
location parameter for the log-logistic distribution.
scale parameter for the log-logistic distribution.
weight parameter for the log-logistic log-logistic mixture distribution.
locationlog1 parameter for the log-logistic log-logistic mixture distribution.
scalelog1 parameter for the log-logistic log-logistic mixture distribution.
locationlog2 parameter for the log-logistic log-logistic mixture distribution.
scalelog2 parameter for the log-logistic log-logistic mixture distribution.
pmix parameter for the log-logistic log-logistic mixture distribution.
weight parameter for the log-normal distribution.
meanlog parameter for the log-normal distribution.
sdlog parameter for the log-normal distribution.
weight parameter for the log-normal log-normal mixture distribution.
meanlog1 parameter for the log-normal log-normal mixture distribution.
sdlog1 parameter for the log-normal log-normal mixture distribution.
meanlog2 parameter for the log-normal log-normal mixture distribution.
sdlog2 parameter for the log-normal log-normal mixture distribution.
pmix parameter for the log-normal log-normal mixture distribution.
weight parameter for the Weibull distribution.
shape parameter for the Weibull distribution.
scale parameter for the Weibull distribution.
An object of class fitdists.
ssd_rburrIII3()
: Random Generation for BurrIII Distribution
ssd_rgamma()
: Random Generation for Gamma Distribution
ssd_rgompertz()
: Random Generation for Gompertz Distribution
ssd_rinvpareto()
: Random Generation for Inverse Pareto Distribution
ssd_rlgumbel()
: Random Generation for log-Gumbel Distribution
ssd_rllogis_llogis()
: Random Generation for Log-Logistic/Log-Logistic Mixture Distribution
ssd_rllogis()
: Random Generation for Log-Logistic Distribution
ssd_rlnorm_lnorm()
: Random Generation for Log-Normal/Log-Normal Mixture Distribution
ssd_rlnorm()
: Random Generation for Log-Normal Distribution
ssd_rmulti()
: Random Generation for Multiple Distributions
ssd_rmulti_fitdists()
: Random Generation for Multiple Distributions
ssd_rweibull()
: Random Generation for Weibull Distribution
ssd_p
and ssd_q
set.seed(50)
hist(ssd_rburrIII3(10000), breaks = 1000)
set.seed(50)
hist(ssd_rgamma(10000), breaks = 1000)
set.seed(50)
hist(ssd_rgompertz(10000), breaks = 1000)
set.seed(50)
hist(ssd_rinvpareto(10000), breaks = 1000)
set.seed(50)
hist(ssd_rlgumbel(10000), breaks = 1000)
set.seed(50)
hist(ssd_rllogis_llogis(10000), breaks = 1000)
set.seed(50)
hist(ssd_rllogis(10000), breaks = 1000)
set.seed(50)
hist(ssd_rlnorm_lnorm(10000), breaks = 1000)
set.seed(50)
hist(ssd_rlnorm(10000), breaks = 1000)
# multi
set.seed(50)
hist(ssd_rmulti(1000, gamma.weight = 0.5, lnorm.weight = 0.5), breaks = 100)
# multi fitdists
fit <- ssd_fit_dists(ssddata::ccme_boron)
ssd_rmulti_fitdists(2, fit)
set.seed(50)
hist(ssd_rweibull(10000), breaks = 1000)
Run the code above in your browser using DataLab