Learn R Programming

ssdtools (version 2.5.0)

ssd_gof: Goodness of Fit

Description

Returns a tbl data frame with the following columns

dist

The distribution name (chr)

aic

Akaike's Information Criterion (dbl)

bic

Bayesian Information Criterion (dbl)

at_bound

Parameter(s) at boundary (lgl)

computable

All parameter have computable standard errors (lgl)

and if the data are non-censored

aicc

Akaike's Information Criterion corrected for sample size (dbl)

and if there are 8 or more samples

ad

Anderson-Darling statistic (dbl)

ks

Kolmogorov-Smirnov statistic (dbl)

cvm

Cramer-von Mises statistic (dbl)

In the case of an object of class fitdists the function also returns

delta

The Information Criterion differences (dbl)

wt

The Information Criterion weights (dbl)

where delta and wt are based on aic for censored data and aicc for non-censored data.

Usage

ssd_gof(x, ...)

# S3 method for fitdists ssd_gof(x, ..., pvalue = FALSE, wt = FALSE)

Value

A tbl data frame of the gof statistics.

Arguments

x

The object.

...

Unused.

pvalue

A flag specifying whether to return p-values or the statistics (default) for the various tests.

wt

A flag specifying whether to return the Akaike weight as "wt" instead of "weight".

Methods (by class)

  • ssd_gof(fitdists): Goodness of Fit

See Also

glance.fitdists()

Examples

Run this code
fits <- ssd_fit_dists(ssddata::ccme_boron)
ssd_gof(fits, wt = TRUE)
ssd_gof(fits, pvalue = TRUE, wt = TRUE)

Run the code above in your browser using DataLab