# NOT RUN {
library(mvtnorm)
set.seed(2)
N <- 5000
beta1 <- c(0, 1.0, 1.0, 0.75)
beta21 <- c(0, 1.5, 1.0, 0.5)
beta22 <- c(1, -1.5, 1.0, 0.5)
covm <- diag(3)
covm[lower.tri(covm)] <- c(0.75, 0.5, 0.25)
covm[upper.tri(covm)] <- covm[lower.tri(covm)]
eps <- rmvnorm(N, rep(0, 3), covm)
x1 <- rmvnorm(N, mean=c(0, -1, 1), sigma=diag(c(1, 0.5, 1)))
x21 <- x1
x22 <- x1
x21[, 3] <- rnorm(N, 1, 1)
x22[, 3] <- rnorm(N, 1, 1)
x1beta1 <- beta1[1] + x1[, 1]*beta1[2] + x1[, 2]*beta1[3] + x1[, 3]*beta1[4]
x21beta21 <- beta21[1] + x21[, 1]*beta21[2] + x21[, 2]*beta21[3] + x21[, 3]*beta21[4]
x22beta22 <- beta22[1] + x22[, 1]*beta22[2] + x22[, 2]*beta22[3] + x22[, 3]*beta22[4]
y1 <- ifelse(x1beta1 + eps[, 1] > 0, 1, 0)
y2 <- ifelse(y1 > 0.5, x21beta21 + eps[, 2],
x22beta22 + eps[, 3])
srsim.fit <- ssmrob(y1 ~ x1, list(y2 ~ x21, y2 ~ x22),
control = heckitrob.control(weights.x1 = "hat", weights.x2 = "covMcd"))
summary(srsim.fit)
# }
Run the code above in your browser using DataLab