# loading a precipitation time series as input for the setup class
library(EmiStatR)
data(P1)
# A setup with three variables to be considered in the Monte Carlo simulation:
# var1, a constant value variable; var2, a variable sampled from a uniform (uni)
# probability distribution function (pdf) with parameters min and max;
# var3, a variable sampled from a normal (nor) pdf with parameteres mu and sigma
ini <- setup(id = "MC_sim1", nsim = 500, seed = 123, mcCores = 1, ts.input = P1,
rng = list(var1 = 150, var2 = c(pdf = "uni", min = 50, max = 110),
var3 = c(pdf = "nor", mu = 90, sigma = 2.25))
)
str(ini)
## definition of AR models for variables var2 and var3 with AR coefficients 0.995 and 0.460
library(EmiStatR)
data(P1)
ini_ar <- setup(id = "MC_sim1_ar", nsim = 500, seed = 123, mcCores = 1, ts.input = P1,
rng = list(var1 = 150, var2 = c(pdf = "nor", mu = 150, sigma = 5),
var3 = c(pdf = "nor", mu = 90, sigma = 2.25)),
ar.model = ar.model <- list(var2 = 0.995, var3 = 0.460)
)
str(ini_ar)
## definition of a bi-variate VAR model for variables var2 and var3
ini_var <- setup(id = "MC_sim1_ar", nsim = 500, seed = 123, mcCores = 1, ts.input = P1,
rng = rng <- list(var1 = 150,
var2 = c(pdf = "nor", mu = 150, sigma = 5),
var3 = c(pdf = "nor", mu = 90, sigma = 2.25)),
var.model = var.model <- list( inp = c("var2", "var3"),
w = c(0.048, 0.021),
A = matrix(c(0.992, -8.8e-05, -31e-4, 0.995),
nrow=2, ncol=2),
C = matrix(c(0.0091, 0.0022, 0.0022, 0.0019),
nrow=2, ncol=2))
)
str(ini_var)
Run the code above in your browser using DataLab