# Remove rows with missing values from airquality dataset
airq <- airquality |>
na.omit()
# Create binary version where the target variable 'Ozone' is dichotomized based on its median
airq_bin <- airq
airq_bin$Ozone <- airq_bin$Ozone >= median(airq_bin$Ozone)
# Create a generic regression model; use autogam
req_aq <- autogam::autogam(airq, 'Ozone', family = gaussian())
req_aq$perf$sa_wmae_mad # Standardized accuracy for regression
# Create a generic classification model; use autogam
class_aq <- autogam::autogam(airq_bin, 'Ozone', family = binomial())
class_aq$perf$auc # AUC (standardized accuracy for classification)
# Compute AUC for regression predictions
reg_auc_aq <- reg_aucroc(
airq$Ozone,
predict(req_aq)
)
# Average AUC over the lo, mid, and hi quantiles of dichotomization:
reg_auc_aq$mean_auc
Run the code above in your browser using DataLab