
STAPLE on binary matrix
staple_bin_mat(
x,
sens_init = 0.99999,
spec_init = 0.99999,
max_iter = 10000,
tol = .Machine$double.eps,
prior = "mean",
verbose = TRUE,
trace = 10,
drop_all_same = FALSE
)
List of output sensitivities, specificities, and vector of probabilities
a nxr matrix where there are n raters and r elements rated
Initialize parameter for sensitivity (p)
Initialize parameter for specificity (q)
Maximum number of iterations to run
Tolerance for convergence
Either "mean" or a vector of prior probabilities,
print diagnostic messages
Number for modulus to print out verbose iterations
drop all records where they are all the same. DO NOT use in practice, only for validation of past results
n = 5
r = 1000
sens = c(0.8, 0.9, 0.8, 0.5, 0.8)
spec = c(0.9, 0.75, 0.99, 0.98, 0.92)
suppressWarnings(RNGversion("3.5.0"))
set.seed(20171120)
n_1 = 200
n_0 = r - n_1
truth = c(rep(0, n_0), rep(1, n_1))
pred_1 = rbinom(n = n, size = n_1, prob = sens)
pred_0 = rbinom(n = n, size = n_0, prob = spec)
pred_0 = sapply(pred_0, function(n) {
sample(c(rep(0, n), rep(1, n_0 -n)))
})
pred_1 = sapply(pred_1, function(n) {
sample(c(rep(1, n), rep(0, n_1 -n)))
})
pred = rbind(pred_0, pred_1)
true_sens = colMeans(pred[ truth == 1, ])
true_spec = colMeans(1-pred[ truth == 0, ])
x = t(pred)
staple_out = staple_bin_mat(x)
testthat::expect_equal(staple_out$sensitivity,
c(0.781593858553476, 0.895868301462594,
0.760514086161722, 0.464483444340873,
0.765239314719065))
staple_out_prior = staple_bin_mat(x, prior = rep(0.5, r))
testthat::expect_equal(staple_out_prior$sensitivity,
c(0.683572080864211, 0.821556768891859,
0.619166852992802, 0.389409921992467, 0.67042085955546))
Run the code above in your browser using DataLab