# 1. Fit some models to each subject of the masked orientation discrimination experiment
# Normally, the fits should be created using the function fitConfModels
# Fits <- fitConfModels(data, models = "WEV", .parallel = TRUE)
# Here, we create the dataframe manually because fitting models takes about
# 10 minutes per model fit per participant on a 2.8GHz processor.
pars <- data.frame(participant = 1:16,
d_1 = c(0.20, 0.05, 0.41, 0.03, 0.00, 0.01, 0.11, 0.03, 0.19, 0.08, 0.00,
0.24, 0.00, 0.00, 0.25, 0.01),
d_2 = c(0.61, 0.19, 0.86, 0.18, 0.17, 0.39, 0.69, 0.14, 0.45, 0.30, 0.00,
0.27, 0.00, 0.05, 0.57, 0.23),
d_3 = c(1.08, 1.04, 2.71, 2.27, 1.50, 1.21, 1.83, 0.80, 1.06, 0.68, 0.29,
0.83, 0.77, 2.19, 1.93, 0.54),
d_4 = c(3.47, 4.14, 6.92, 4.79, 3.72, 3.24, 4.55, 2.51, 3.78, 2.40, 1.95,
2.55, 4.59, 4.27, 4.08, 1.80),
d_5 = c(4.08, 5.29, 7.99, 5.31, 4.53, 4.66, 6.21, 4.67, 5.85, 3.39, 3.39,
4.42, 6.48, 5.35, 5.28, 2.87),
c = c(-0.30, -0.15, -1.37, 0.17, -0.12, -0.19, -0.12, 0.41, -0.27, 0.00,
-0.19, -0.21, -0.91, -0.26, -0.20, 0.10),
theta_minus.4 = c(-2.07, -2.04, -2.76, -2.32, -2.21, -2.33, -2.27, -2.29,
-2.69, -3.80, -2.83, -1.74, -2.58, -3.09, -2.20, -1.57),
theta_minus.3 = c(-1.25, -1.95, -1.92, -2.07, -1.62, -1.68, -2.04, -2.02,
-1.84, -3.37, -1.89, -1.44, -2.31, -2.08, -1.53, -1.46),
theta_minus.2 = c(-0.42, -1.40, -0.37, -1.96, -1.45, -1.27, -1.98, -1.66,
-1.11, -2.69, -1.60, -1.25, -2.21, -1.68, -1.08, -1.17),
theta_minus.1 = c(0.13, -0.90, 0.93, -1.71, -1.25, -0.59, -1.40, -1.00,
-0.34, -1.65, -1.21, -0.76, -1.99, -0.92, -0.28, -0.99),
theta_plus.1 = c(-0.62, 0.82, -2.77, 2.01, 1.39, 0.60, 1.51, 0.90, 0.18,
1.62, 0.99,0.88, 1.67, 0.92, 0.18, 0.88),
theta_plus.2 = c(0.15, 1.45, -1.13,2.17, 1.61, 1.24, 1.99, 1.55, 0.96, 2.44,
1.53, 1.66, 2.00, 1.51, 1.08, 1.05),
theta_plus.3 = c(1.40, 2.24, 0.77, 2.32, 1.80, 1.58, 2.19, 2.19, 1.54, 3.17,
1.86, 1.85, 2.16, 2.09, 1.47, 1.70),
theta_plus.4 = c(2.19, 2.40, 1.75, 2.58, 2.53, 2.24, 2.59, 2.55, 2.58, 3.85,
2.87, 2.15, 2.51, 3.31, 2.27, 1.79),
sigma = c(1.01, 0.64, 1.33, 0.39, 0.30, 0.75, 0.75, 1.07, 0.65, 0.29, 0.31,
0.78, 0.39, 0.42, 0.69, 0.52),
w = c(0.54, 0.50, 0.38, 0.38, 0.36, 0.44, 0.48, 0.48, 0.52, 0.46, 0.53, 0.48,
0.29, 0.45, 0.51, 0.63))
# 2. Plot the predicted probabilities based on model and fitted parameters
# against the observed relative frequencies.
PlotFitWEV <- plotConfModelFit(MaskOri, pars, model="WEV")
PlotFitWEV
Run the code above in your browser using DataLab