# NOT RUN {
library(ggrepel)
library(limma)
# load the simulated dataset
data(esSim)
print(esSim)
# expression levels
y = exprs(esSim)
print(dim(y))
print(y[1:2,])
# phenotype data
pDat = pData(esSim)
print(dim(pDat))
print(pDat)
# design matrix
design = model.matrix(~grp, data = pDat)
print(design)
options(digits = 3)
# Ordinary fit
fit <- lmFit(y, design)
fit2 <- eBayes(fit)
# get result data frame
resFrame = topTable(fit2,coef = 2, number = nrow(esSim))
print(dim(resFrame))
print(resFrame[1:2,])
resFrame$sigFlag = resFrame$adj.P.Val < 0.05
resFrame$probe = rownames(resFrame)
# make sure set NA to genes non-differentially expressed
resFrame$probe[which(resFrame$sigFlag == FALSE)] = NA
print(resFrame[1:2,])
print(table(resFrame$sigFlag, useNA = "ifany"))
statVisual(type = 'Volcano',
resFrame = resFrame,
stats = 'logFC',
p.value = 'P.Value',
group = 'sigFlag',
rowname.var = 'probe',
point.size = 1)
Volcano(
resFrame = resFrame,
stats = 'logFC',
p.value = 'P.Value',
group = 'sigFlag',
rowname.var = 'probe',
point.size = 1)
# }
Run the code above in your browser using DataLab