
Last chance! 50% off unlimited learning
Sale ends in
glmgam.fit(X, y, start=NULL, tol=1e-6, maxit=50, trace=FALSE)
TRUE
then output diagnostic information at each iteration.iter
is set to maxit+1
.glm.fit(X,y,family=Gamma(link="identity"))
but has more secure convergence.
This function is used by randomizedBlockFit
.y <- rgamma(10,shape=5)
X <- cbind(1,1:10)
fit <- glmgam.fit(X,y,trace=TRUE)
Run the code above in your browser using DataLab