dinvgauss(x, mu, lambda=1, log=FALSE)
pinvgauss(q, mu, lambda=1)
qinvgauss(p, mu, lambda=1)
rinvgauss(n, mu, lambda=1)length(n) is larger than 1, then length(n) random values are returned.p or q or the number of deviates generated.p or q or the number of deviates generated.TRUE, the log-density is returned.x or q giving the density (dinvgauss), probability (pinvgauss), quantile (qinvgauss) or random sample (rinvgauss) for the inverse
Gaussian distribution with mean mu and inverse dispersion lambda.
Elements of q or p that are missing will cause the corresponding elements of
the result to be missing.dinvGauss, pinvGauss, qinvGauss and rinvGauss in the SuppDists package.y <- rinvgauss(20,1,2) # generate vector of 20 random numbers
p <- pinvgauss(y,1,2) # p should be uniformRun the code above in your browser using DataLab