Learn R Programming

⚠️There's a newer version (1.5.0) of this package.Take me there.

statmod (version 1.4.17)

Statistical Modeling

Description

Various statistical modeling functions including growth curve comparisons, limiting dilution analysis, mixed linear models, heteroscedastic regression, Tweedie family generalized linear models, the inverse-Gaussian distribution and Gauss quadrature.

Copy Link

Version

Install

install.packages('statmod')

Monthly Downloads

75,793

Version

1.4.17

License

GPL (>= 2)

Maintainer

Gordon Smyth

Last Published

February 8th, 2013

Functions in statmod (1.4.17)

forward

Forward Selection of Covariates for Multiple Regression
meanT

Mean t-Statistic Between Two Groups of Growth Curves
invgauss

Inverse Gaussian Distribution
power.fisher.test

Power of Fisher's Exact Test for Comparing Proportions
remlscore

REML for Heteroscedastic Regression
logmdigamma

Log Minus Digamma Function
gauss.quad

Gaussian Quadrature
sage.test

Exact Binomial Tests For Comparing Two SAGE Libraries (Obsolete)
matvec

Multiply a Matrix by a Vector
glm.scoretest

Score Test for Adding a Covariate to a GLM
tweedie

Tweedie Generalized Linear Models
hommel.test

Test Multiple Comparisons Using Hommel's Method
mixedModel2

Fit Mixed Linear Model with 2 Error Components
deprecated

Deprecated Functions in statmod Package
fitNBP

Negative Binomial Model for SAGE Libraries with Pearson Estimation of Dispersion
remlscoregamma

Approximate REML for gamma regression with structured dispersion
welding

Data: Tensile Strength of Welds
elda

Extreme Limiting Dilution Analysis
1.StatMod

Introduction to the StatMod Package
growthcurve

Compare Groups of Growth Curves
mscale

M Scale Estimation
gauss.quad.prob

Gaussian Quadrature with Probability Distributions
qresiduals

Randomized Quantile Residuals
plot.limdil

Plot or print an object of class limdil
glmgam.fit

Fit Generalized Linear Model by Fisher Scoring with Levenberg Damping
Digamma

Digamma generalized linear model family
permp

Exact permutation p-values