# Poisson

0th

Percentile

##### The Poisson Distribution

Density, distribution function, quantile function and random generation for the Poisson distribution with parameter lambda.

Keywords
distribution
##### Usage
dpois(x, lambda, log = FALSE)
ppois(q, lambda, lower.tail = TRUE, log.p = FALSE)
qpois(p, lambda, lower.tail = TRUE, log.p = FALSE)
rpois(n, lambda)
##### Arguments
x
vector of (non-negative integer) quantiles.
q
vector of quantiles.
p
vector of probabilities.
n
number of random values to return.
lambda
vector of (non-negative) means.
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$.
##### Details

The Poisson distribution has density

$$p(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$ for $x = 0, 1, 2, \ldots$ . The mean and variance are $E(X) = Var(X) = \lambda$.

If an element of x is not integer, the result of dpois is zero, with a warning. $p(x)$ is computed using Loader's algorithm, see the reference in dbinom.

The quantile is right continuous: qpois(p, lambda) is the smallest integer $x$ such that $P(X \le x) \ge p$.

Setting lower.tail = FALSE allows to get much more precise results when the default, lower.tail = TRUE would return 1, see the example below.

##### Value

dpois gives the (log) density, ppois gives the (log) distribution function, qpois gives the quantile function, and rpois generates random deviates.Invalid lambda will result in return value NaN, with a warning.The length of the result is determined by n for rpois, and is the maximum of the lengths of the numerical arguments for the other functions.The numerical arguments other than n are recycled to the length of the result. Only the first elements of the logical arguments are used.

##### Source

dpois uses C code contributed by Catherine Loader (see dbinom). ppois uses pgamma. qpois uses the Cornish--Fisher Expansion to include a skewness correction to a normal approximation, followed by a search. rpois uses Ahrens, J. H. and Dieter, U. (1982). Computer generation of Poisson deviates from modified normal distributions. ACM Transactions on Mathematical Software, 8, 163--179.

Distributions for other standard distributions, including dbinom for the binomial and dnbinom for the negative binomial distribution.

poisson.test.

• Poisson
• dpois
• ppois
• qpois
• rpois
##### Examples
library(stats) require(graphics) -log(dpois(0:7, lambda = 1) * gamma(1+ 0:7)) # == 1 Ni <- rpois(50, lambda = 4); table(factor(Ni, 0:max(Ni))) 1 - ppois(10*(15:25), lambda = 100) # becomes 0 (cancellation) ppois(10*(15:25), lambda = 100, lower.tail = FALSE) # no cancellation par(mfrow = c(2, 1)) x <- seq(-0.01, 5, 0.01) plot(x, ppois(x, 1), type = "s", ylab = "F(x)", main = "Poisson(1) CDF") plot(x, pbinom(x, 100, 0.01), type = "s", ylab = "F(x)", main = "Binomial(100, 0.01) CDF") 
Documentation reproduced from package stats, version 3.1.1, License: Part of R 3.1.1

### Community examples

Looks like there are no examples yet.