selfStart
model evaluates the first-order compartment
function and its gradient. It has an initial
attribute that
creates initial estimates of the parameters lKe
, lKa
,
and lCl
.
SSfol(Dose, input, lKe, lKa, lCl)
input
, which is the
value of the expression
Dose * exp(lKe+lKa-lCl) * (exp(-exp(lKe)*input) - exp(-exp(lKa)*input)) / (exp(lKa) - exp(lKe))If all of the arguments
lKe
, lKa
, and lCl
are
names of objects, the gradient matrix with respect to these names is
attached as an attribute named gradient
.
nls
, selfStart
Theoph.1 <- Theoph[ Theoph$Subject == 1, ]
SSfol(Theoph.1$Dose, Theoph.1$Time, -2.5, 0.5, -3) # response only
lKe <- -2.5; lKa <- 0.5; lCl <- -3
SSfol(Theoph.1$Dose, Theoph.1$Time, lKe, lKa, lCl) # response and gradient
getInitial(conc ~ SSfol(Dose, Time, lKe, lKa, lCl), data = Theoph.1)
## Initial values are in fact the converged values
fm1 <- nls(conc ~ SSfol(Dose, Time, lKe, lKa, lCl), data = Theoph.1)
summary(fm1)
Run the code above in your browser using DataLab