location and scale parameter scale.
dcauchy(x, location = 0, scale = 1, log = FALSE)
pcauchy(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qcauchy(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rcauchy(n, location = 0, scale = 1)length(n) > 1, the length
    is taken to be the number required.dcauchy, pcauchy, and qcauchy are respectively
  the density, distribution function and quantile function of the Cauchy
  distribution.  rcauchy generates random deviates from the
  Cauchy.The length of the result is determined by n for
  rcauchy, and is the maximum of the lengths of the
  numerical arguments for the other functions.The numerical arguments other than n are recycled to the
  length of the result.  Only the first elements of the logical
  arguments are used.    
dcauchy, pcauchy and qcauchy are all calculated
  from numerically stable versions of the definitions. rcauchy uses inversion.location or scale are not specified, they assume
  the default values of 0 and 1 respectively.The Cauchy distribution with location $l$ and scale $s$ has density $$f(x) = \frac{1}{\pi s} \left( 1 + \left(\frac{x - l}{s}\right)^2 \right)^{-1}% $$ for all $x$.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 16. Wiley, New York.
dt for the t distribution which generalizes
  dcauchy(*, l = 0, s = 1).