ARMAacf

0th

Percentile

Compute Theoretical ACF for an ARMA Process

Compute the theoretical autocorrelation function or partial autocorrelation function for an ARMA process.

Keywords
ts
Usage
ARMAacf(ar = numeric(), ma = numeric(), lag.max = r, pacf = FALSE)
Arguments
ar
numeric vector of AR coefficients
ma
numeric vector of MA coefficients
lag.max
integer. Maximum lag required. Defaults to max(p, q+1), where p, q are the numbers of AR and MA terms respectively.
pacf
logical. Should the partial autocorrelations be returned?
Details

The methods used follow Brockwell & Davis (1991, section 3.3). Their equations (3.3.8) are solved for the autocovariances at lags $0, \dots, \max(p, q+1)$, and the remaining autocorrelations are given by a recursive filter.

Value

  • A vector of (partial) autocorrelations, named by the lags.

References

Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods, Second Edition. Springer.

See Also

arima, ARMAtoMA, acf2AR for inverting part of ARMAacf; further filter.

Aliases
  • ARMAacf
Examples
library(stats) ARMAacf(c(1.0, -0.25), 1.0, lag.max = 10) ## Example from Brockwell & Davis (1991, pp.92-4) ## answer: 2^(-n) * (32/3 + 8 * n) /(32/3) n <- 1:10 a.n <- 2^(-n) * (32/3 + 8 * n) /(32/3) (A.n <- ARMAacf(c(1.0, -0.25), 1.0, lag.max = 10)) stopifnot(all.equal(unname(A.n), c(1, a.n))) ARMAacf(c(1.0, -0.25), 1.0, lag.max = 10, pacf = TRUE) zapsmall(ARMAacf(c(1.0, -0.25), lag.max = 10, pacf = TRUE)) ## Cov-Matrix of length-7 sub-sample of AR(1) example: toeplitz(ARMAacf(0.8, lag.max = 7))
Documentation reproduced from package stats, version 3.3, License: Part of R 3.3

Community examples

Looks like there are no examples yet.