# deriv

0th

Percentile

##### Symbolic and Algorithmic Derivatives of Simple Expressions

Compute derivatives of simple expressions, symbolically.

Keywords
math, nonlinear
##### Usage
D (expr, name)
deriv(expr, ...)
deriv3(expr, ...) ## S3 method for class 'default':
deriv(expr, namevec, function.arg = NULL, tag = ".expr",
hessian = FALSE, \dots)
## S3 method for class 'formula':
deriv(expr, namevec, function.arg = NULL, tag = ".expr",
hessian = FALSE, \dots)## S3 method for class 'default':
deriv3(expr, namevec, function.arg = NULL, tag = ".expr",
hessian = TRUE, \dots)
## S3 method for class 'formula':
deriv3(expr, namevec, function.arg = NULL, tag = ".expr",
hessian = TRUE, \dots)
##### Arguments
expr
A expression or call or (except D) a formula with no lhs.
name,namevec
character vector, giving the variable names (only one for D()) with respect to which derivatives will be computed.
function.arg
If specified and non-NULL, a character vector of arguments for a function return, or a function (with empty body) or TRUE, the latter indicating that a function with argument names namevec should be used.
tag
character; the prefix to be used for the locally created variables in result.
hessian
a logical value indicating whether the second derivatives should be calculated and incorporated in the return value.
...
arguments to be passed to or from methods.
##### Details

D is modelled after its S namesake for taking simple symbolic derivatives.

deriv is a generic function with a default and a formula method. It returns a call for computing the expr and its (partial) derivatives, simultaneously. It uses so-called algorithmic derivatives. If function.arg is a function, its arguments can have default values, see the fx example below.

Currently, deriv.formula just calls deriv.default after extracting the expression to the right of ~.

deriv3 and its methods are equivalent to deriv and its methods except that hessian defaults to TRUE for deriv3.

The internal code knows about the arithmetic operators +, -, *, / and ^, and the single-variable functions exp, log, sin, cos, tan, sinh, cosh, sqrt, pnorm, dnorm, asin, acos, atan, gamma, lgamma, digamma and trigamma, as well as psigamma for one or two arguments (but derivative only with respect to the first). (Note that only the standard normal distribution is considered.)

##### Value

• D returns a call and therefore can easily be iterated for higher derivatives.

deriv and deriv3 normally return an expression object whose evaluation returns the function values with a "gradient" attribute containing the gradient matrix. If hessian is TRUE the evaluation also returns a "hessian" attribute containing the Hessian array.

If function.arg is not NULL, deriv and deriv3 return a function with those arguments rather than an expression.

##### References

Griewank, A. and Corliss, G. F. (1991) Automatic Differentiation of Algorithms: Theory, Implementation, and Application. SIAM proceedings, Philadelphia.

Bates, D. M. and Chambers, J. M. (1992) Nonlinear models. Chapter 10 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

nlm and optim for numeric minimization which could make use of derivatives,

##### Aliases
• D
• deriv
• deriv.default
• deriv.formula
• deriv3
• deriv3.default
• deriv3.formula
##### Examples
library(stats) ## formula argument : dx2x <- deriv(~ x^2, "x") ; dx2x expression({ .value <- x^2 .grad <- array(0, c(length(.value), 1), list(NULL, c("x"))) .grad[, "x"] <- 2 * x attr(.value, "gradient") <- .grad .value }) mode(dx2x) x <- -1:2 eval(dx2x) ## Something 'tougher': trig.exp <- expression(sin(cos(x + y^2))) ( D.sc <- D(trig.exp, "x") ) all.equal(D(trig.exp[], "x"), D.sc) ( dxy <- deriv(trig.exp, c("x", "y")) ) y <- 1 eval(dxy) eval(D.sc) ## function returned: deriv((y ~ sin(cos(x) * y)), c("x","y"), func = TRUE) ## function with defaulted arguments: (fx <- deriv(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"), function(b0, b1, th, x = 1:7){} ) ) fx(2, 3, 4) ## First derivative D(expression(x^2), "x") stopifnot(D(as.name("x"), "x") == 1) ## Higher derivatives deriv3(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"), c("b0", "b1", "th", "x") ) ## Higher derivatives: DD <- function(expr, name, order = 1) { if(order < 1) stop("'order' must be >= 1") if(order == 1) D(expr, name) else DD(D(expr, name), name, order - 1) } DD(expression(sin(x^2)), "x", 3) ## showing the limits of the internal "simplify()" : -sin(x^2) * (2 * x) * 2 + ((cos(x^2) * (2 * x) * (2 * x) + sin(x^2) * 2) * (2 * x) + sin(x^2) * (2 * x) * 2)
Documentation reproduced from package stats, version 3.3, License: Part of R 3.3

### Community examples

singhkpratham at Jul 19, 2017 stats v3.4.0

##### Let's consider we need to find derivative of "a square" r # the following will return a function (derivative of a^2 is 2*a) s = deriv(~a^2,'a',func = T) # the following can be used to get result of derivative by passing in any number # for our example, it will be 2*the_no_you_pass attr(s(4),'gradient')