# se.contrast

##### Standard Errors for Contrasts in Model Terms

Returns the standard errors for one or more contrasts in an `aov`

object.

- Keywords
- models

##### Usage

```
se.contrast(object, …)
# S3 method for aov
se.contrast(object, contrast.obj,
coef = contr.helmert(ncol(contrast))[, 1],
data = NULL, …)
```

##### Arguments

- object
A suitable fit, usually from

`aov`

.- contrast.obj
The contrasts for which standard errors are requested. This can be specified via a list or via a matrix. A single contrast can be specified by a list of logical vectors giving the cells to be contrasted. Multiple contrasts should be specified by a matrix, each column of which is a numerical contrast vector (summing to zero).

- coef
used when

`contrast.obj`

is a list; it should be a vector of the same length as the list with zero sum. The default value is the first Helmert contrast, which contrasts the first and second cell means specified by the list.- data
The data frame used to evaluate

`contrast.obj`

.- …
further arguments passed to or from other methods.

##### Details

Contrasts are usually used to test if certain means are
significantly different; it can be easier to use `se.contrast`

than compute them directly from the coefficients.

In multistratum models, the contrasts can appear in more than one
stratum, in which case the standard errors are computed in the lowest
stratum and adjusted for efficiencies and comparisons between
strata. (See the comments in the note in the help for
`aov`

about using orthogonal contrasts.) Such standard
errors are often conservative.

Suitable matrices for use with `coef`

can be found by
calling `contrasts`

and indexing the columns by a factor.

##### Value

A vector giving the standard errors for each contrast.

##### See Also

##### Examples

`library(stats)`

```
# NOT RUN {
## From Venables and Ripley (2002) p.165.
N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,
55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)
npk <- data.frame(block = gl(6,4), N = factor(N), P = factor(P),
K = factor(K), yield = yield)
## Set suitable contrasts.
options(contrasts = c("contr.helmert", "contr.poly"))
npk.aov1 <- aov(yield ~ block + N + K, data = npk)
se.contrast(npk.aov1, list(N == "0", N == "1"), data = npk)
# or via a matrix
cont <- matrix(c(-1,1), 2, 1, dimnames = list(NULL, "N"))
se.contrast(npk.aov1, cont[N, , drop = FALSE]/12, data = npk)
## test a multi-stratum model
npk.aov2 <- aov(yield ~ N + K + Error(block/(N + K)), data = npk)
se.contrast(npk.aov2, list(N == "0", N == "1"))
## an example looking at an interaction contrast
## Dataset from R.E. Kirk (1995)
## 'Experimental Design: procedures for the behavioral sciences'
score <- c(12, 8,10, 6, 8, 4,10,12, 8, 6,10,14, 9, 7, 9, 5,11,12,
7,13, 9, 9, 5,11, 8, 7, 3, 8,12,10,13,14,19, 9,16,14)
A <- gl(2, 18, labels = c("a1", "a2"))
B <- rep(gl(3, 6, labels = c("b1", "b2", "b3")), 2)
fit <- aov(score ~ A*B)
cont <- c(1, -1)[A] * c(1, -1, 0)[B]
sum(cont) # 0
sum(cont*score) # value of the contrast
se.contrast(fit, as.matrix(cont))
(t.stat <- sum(cont*score)/se.contrast(fit, as.matrix(cont)))
summary(fit, split = list(B = 1:2), expand.split = TRUE)
## t.stat^2 is the F value on the A:B: C1 line (with Helmert contrasts)
## Now look at all three interaction contrasts
cont <- c(1, -1)[A] * cbind(c(1, -1, 0), c(1, 0, -1), c(0, 1, -1))[B,]
se.contrast(fit, cont) # same, due to balance.
rm(A, B, score)
## multi-stratum example where efficiencies play a role
## An example from Yates (1932),
## a 2^3 design in 2 blocks replicated 4 times
Block <- gl(8, 4)
A <- factor(c(0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,
0,1,0,1,0,1,0,1,0,1,0,1))
B <- factor(c(0,0,1,1,0,0,1,1,0,1,0,1,1,0,1,0,0,0,1,1,
0,0,1,1,0,0,1,1,0,0,1,1))
C <- factor(c(0,1,1,0,1,0,0,1,0,0,1,1,0,0,1,1,0,1,0,1,
1,0,1,0,0,0,1,1,1,1,0,0))
Yield <- c(101, 373, 398, 291, 312, 106, 265, 450, 106, 306, 324, 449,
272, 89, 407, 338, 87, 324, 279, 471, 323, 128, 423, 334,
131, 103, 445, 437, 324, 361, 302, 272)
aovdat <- data.frame(Block, A, B, C, Yield)
fit <- aov(Yield ~ A + B * C + Error(Block), data = aovdat)
cont1 <- c(-1, 1)[A]/32 # Helmert contrasts
cont2 <- c(-1, 1)[B] * c(-1, 1)[C]/32
cont <- cbind(A = cont1, BC = cont2)
colSums(cont*Yield) # values of the contrasts
se.contrast(fit, as.matrix(cont))
# }
# NOT RUN {
# comparison with lme
library(nlme)
fit2 <- lme(Yield ~ A + B*C, random = ~1 | Block, data = aovdat)
summary(fit2)$tTable # same estimates, similar (but smaller) se's.
# }
```

*Documentation reproduced from package stats, version 3.6.1, License: Part of R 3.6.1*