# Multinom

0th

Percentile

##### The Multinomial Distribution

Generate multinomially distributed random number vectors and compute multinomial probabilities.

Keywords
distribution
##### Usage
rmultinom(n, size, prob)
dmultinom(x, size = NULL, prob, log = FALSE)
##### Arguments
x

vector of length $K$ of integers in 0:size.

n

number of random vectors to draw.

size

integer, say $N$, specifying the total number of objects that are put into $K$ boxes in the typical multinomial experiment. For dmultinom, it defaults to sum(x).

prob

numeric non-negative vector of length $K$, specifying the probability for the $K$ classes; is internally normalized to sum 1. Infinite and missing values are not allowed.

log

logical; if TRUE, log probabilities are computed.

##### Details

If x is a $K$-component vector, dmultinom(x, prob) is the probability $$P(X_1=x_1,\ldots,X_K=x_k) = C \times \prod_{j=1}^K \pi_j^{x_j}$$ where $C$ is the ‘multinomial coefficient’ $C = N! / (x_1! \cdots x_K!)$ and $N = \sum_{j=1}^K x_j$.

By definition, each component $X_j$ is binomially distributed as Bin(size, prob[j]) for $j = 1, \ldots, K$.

The rmultinom() algorithm draws binomials $X_j$ from $Bin(n_j,P_j)$ sequentially, where $n_1 = N$ (N := size), $P_1 = \pi_1$ ($\pi$ is prob scaled to sum 1), and for $j \ge 2$, recursively, $n_j = N - \sum_{k=1}^{j-1} X_k$ and $P_j = \pi_j / (1 - \sum_{k=1}^{j-1} \pi_k)$.

##### Value

For rmultinom(), an integer $K \times n$ matrix where each column is a random vector generated according to the desired multinomial law, and hence summing to size. Whereas the transposed result would seem more natural at first, the returned matrix is more efficient because of columnwise storage.

##### Note

dmultinom is currently not vectorized at all and has no C interface (API); this may be amended in the future.

Distributions for standard distributions, including dbinom which is a special case conceptually.

• Multinomial
• rmultinom
• dmultinom
##### Examples
library(stats) # NOT RUN { rmultinom(10, size = 12, prob = c(0.1,0.2,0.8)) pr <- c(1,3,6,10) # normalization not necessary for generation rmultinom(10, 20, prob = pr) ## all possible outcomes of Multinom(N = 3, K = 3) X <- t(as.matrix(expand.grid(0:3, 0:3))); X <- X[, colSums(X) <= 3] X <- rbind(X, 3:3 - colSums(X)); dimnames(X) <- list(letters[1:3], NULL) X round(apply(X, 2, function(x) dmultinom(x, prob = c(1,2,5))), 3) # } 
Documentation reproduced from package stats, version 3.6.2, License: Part of R 3.6.2

### Community examples

Looks like there are no examples yet.