```
# NOT RUN {
## formula argument :
dx2x <- deriv(~ x^2, "x") ; dx2x
# }
# NOT RUN {
expression({
.value <- x^2
.grad <- array(0, c(length(.value), 1), list(NULL, c("x")))
.grad[, "x"] <- 2 * x
attr(.value, "gradient") <- .grad
.value
})
# }
# NOT RUN {
mode(dx2x)
x <- -1:2
eval(dx2x)
## Something 'tougher':
trig.exp <- expression(sin(cos(x + y^2)))
( D.sc <- D(trig.exp, "x") )
all.equal(D(trig.exp[[1]], "x"), D.sc)
( dxy <- deriv(trig.exp, c("x", "y")) )
y <- 1
eval(dxy)
eval(D.sc)
## function returned:
deriv((y ~ sin(cos(x) * y)), c("x","y"), func = TRUE)
## function with defaulted arguments:
(fx <- deriv(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),
function(b0, b1, th, x = 1:7){} ) )
fx(2, 3, 4)
## First derivative
D(expression(x^2), "x")
stopifnot(D(as.name("x"), "x") == 1)
## Higher derivatives
deriv3(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),
c("b0", "b1", "th", "x") )
## Higher derivatives:
DD <- function(expr, name, order = 1) {
if(order < 1) stop("'order' must be >= 1")
if(order == 1) D(expr, name)
else DD(D(expr, name), name, order - 1)
}
DD(expression(sin(x^2)), "x", 3)
## showing the limits of the internal "simplify()" :
# }
# NOT RUN {
-sin(x^2) * (2 * x) * 2 + ((cos(x^2) * (2 * x) * (2 * x) + sin(x^2) *
2) * (2 * x) + sin(x^2) * (2 * x) * 2)
# }
# NOT RUN {
## New (R 3.4.0, 2017):
D(quote(log1p(x^2)), "x") ## log1p(x) = log(1 + x)
stopifnot(identical(
D(quote(log1p(x^2)), "x"),
D(quote(log(1+x^2)), "x")))
D(quote(expm1(x^2)), "x") ## expm1(x) = exp(x) - 1
stopifnot(identical(
D(quote(expm1(x^2)), "x") -> Dex1,
D(quote(exp(x^2)-1), "x")),
identical(Dex1, quote(exp(x^2) * (2 * x))))
D(quote(sinpi(x^2)), "x") ## sinpi(x) = sin(pi*x)
D(quote(cospi(x^2)), "x") ## cospi(x) = cos(pi*x)
D(quote(tanpi(x^2)), "x") ## tanpi(x) = tan(pi*x)
stopifnot(identical(D(quote(log2 (x^2)), "x"),
quote(2 * x/(x^2 * log(2)))),
identical(D(quote(log10(x^2)), "x"),
quote(2 * x/(x^2 * log(10)))))
# }
```

Run the code above in your browser using DataLab