```
# NOT RUN {
## Agresti (1990, p. 61f; 2002, p. 91) Fisher's Tea Drinker
## A British woman claimed to be able to distinguish whether milk or
## tea was added to the cup first. To test, she was given 8 cups of
## tea, in four of which milk was added first. The null hypothesis
## is that there is no association between the true order of pouring
## and the woman's guess, the alternative that there is a positive
## association (that the odds ratio is greater than 1).
TeaTasting <-
matrix(c(3, 1, 1, 3),
nrow = 2,
dimnames = list(Guess = c("Milk", "Tea"),
Truth = c("Milk", "Tea")))
fisher.test(TeaTasting, alternative = "greater")
## => p = 0.2429, association could not be established
## Fisher (1962, 1970), Criminal convictions of like-sex twins
Convictions <- matrix(c(2, 10, 15, 3), nrow = 2,
dimnames =
list(c("Dizygotic", "Monozygotic"),
c("Convicted", "Not convicted")))
Convictions
fisher.test(Convictions, alternative = "less")
fisher.test(Convictions, conf.int = FALSE)
fisher.test(Convictions, conf.level = 0.95)$conf.int
fisher.test(Convictions, conf.level = 0.99)$conf.int
## A r x c table Agresti (2002, p. 57) Job Satisfaction
Job <- matrix(c(1,2,1,0, 3,3,6,1, 10,10,14,9, 6,7,12,11), 4, 4,
dimnames = list(income = c("< 15k", "15-25k", "25-40k", "> 40k"),
satisfaction = c("VeryD", "LittleD", "ModerateS", "VeryS")))
fisher.test(Job) # 0.7827
fisher.test(Job, simulate.p.value = TRUE, B = 1e5) # also close to 0.78
## 6th example in Mehta & Patel's JASA paper
MP6 <- rbind(
c(1,2,2,1,1,0,1),
c(2,0,0,2,3,0,0),
c(0,1,1,1,2,7,3),
c(1,1,2,0,0,0,1),
c(0,1,1,1,1,0,0))
fisher.test(MP6)
# Exactly the same p-value, as Cochran's conditions are never met:
fisher.test(MP6, hybrid=TRUE)
# }
```

Run the code above in your browser using DataLab