50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

stats (version 3.6.2)

rWishart: Random Wishart Distributed Matrices

Description

Generate n random matrices, distributed according to the Wishart distribution with parameters Sigma and df, Wp(Σ,m), m=\codedf, Σ=\codeSigma.

Usage

rWishart(n, df, Sigma)

Arguments

n

integer sample size.

df

numeric parameter, “degrees of freedom”.

Sigma

positive definite (p×p) “scale” matrix, the matrix parameter of the distribution.

Value

a numeric array, say R, of dimension p×p×n, where each R[,,i] is a positive definite matrix, a realization of the Wishart distribution Wp(Σ,m),  m=\codedf, Σ=\codeSigma.

Details

If X1,,Xm, XiRp is a sample of m independent multivariate Gaussians with mean (vector) 0, and covariance matrix Σ, the distribution of M=XX is Wp(Σ,m).

Consequently, the expectation of M is E[M]=m×Σ. Further, if Sigma is scalar (p=1), the Wishart distribution is a scaled chi-squared (χ2) distribution with df degrees of freedom, W1(σ2,m)=σ2χm2.

The component wise variance is Var(Mij)=m(Σij2+ΣiiΣjj).

References

Mardia, K. V., J. T. Kent, and J. M. Bibby (1979) Multivariate Analysis, London: Academic Press.

See Also

cov, rnorm, rchisq.

Examples

Run this code
# NOT RUN {
## Artificial
S <- toeplitz((10:1)/10)
set.seed(11)
R <- rWishart(1000, 20, S)
dim(R)  #  10 10  1000
mR <- apply(R, 1:2, mean)  # ~= E[ Wish(S, 20) ] = 20 * S
stopifnot(all.equal(mR, 20*S, tolerance = .009))

## See Details, the variance is
Va <- 20*(S^2 + tcrossprod(diag(S)))
vR <- apply(R, 1:2, var)
stopifnot(all.equal(vR, Va, tolerance = 1/16))
# }

Run the code above in your browser using DataLab