`screeplot.default`

plots the variances against the number of the
principal component. This is also the `plot`

method for classes
`"princomp"`

and `"prcomp"`

.

```
# S3 method for default
screeplot(x, npcs = min(10, length(x$sdev)),
type = c("barplot", "lines"),
main = deparse(substitute(x)), …)
```

npcs

the number of components to be plotted.

type

the type of plot. Can be abbreviated.

main, …

graphics parameters.

Mardia, K. V., J. T. Kent and J. M. Bibby (1979).
*Multivariate Analysis*, London: Academic Press.

Venables, W. N. and B. D. Ripley (2002).
*Modern Applied Statistics with S*, Springer-Verlag.

# NOT RUN { require(graphics) ## The variances of the variables in the ## USArrests data vary by orders of magnitude, so scaling is appropriate (pc.cr <- princomp(USArrests, cor = TRUE)) # inappropriate screeplot(pc.cr) fit <- princomp(covmat = Harman74.cor) screeplot(fit) screeplot(fit, npcs = 24, type = "lines") # }

Run the code above in your browser using DataCamp Workspace