```
# NOT RUN {
ii <- setNames(0:8, 0:8)
symnum(ii, cut = 2*(0:4), sym = c(".", "-", "+", "$"))
symnum(ii, cut = 2*(0:4), sym = c(".", "-", "+", "$"), show.max = TRUE)
symnum(1:12 %% 3 == 0) # --> "|" = TRUE, "." = FALSE for logical
## Pascal's Triangle modulo 2 -- odd and even numbers:
N <- 38
pascal <- t(sapply(0:N, function(n) round(choose(n, 0:N - (N-n)%/%2))))
rownames(pascal) <- rep("", 1+N) # <-- to improve "graphic"
symnum(pascal %% 2, symbols = c(" ", "A"), numeric = FALSE)
##-- Symbolic correlation matrices:
symnum(cor(attitude), diag = FALSE)
symnum(cor(attitude), abbr. = NULL)
symnum(cor(attitude), abbr. = FALSE)
symnum(cor(attitude), abbr. = 2)
symnum(cor(rbind(1, rnorm(25), rnorm(25)^2)))
symnum(cor(matrix(rexp(30, 1), 5, 18))) # <<-- PATTERN ! --
symnum(cm1 <- cor(matrix(rnorm(90) , 5, 18))) # < White Noise SMALL n
symnum(cm1, diag = FALSE)
symnum(cm2 <- cor(matrix(rnorm(900), 50, 18))) # < White Noise "BIG" n
symnum(cm2, lower = FALSE)
## NA's:
Cm <- cor(matrix(rnorm(60), 10, 6)); Cm[c(3,6), 2] <- NA
symnum(Cm, show.max = NULL)
## Graphical P-values (aka "significance stars"):
pval <- rev(sort(c(outer(1:6, 10^-(1:3)))))
symp <- symnum(pval, corr = FALSE,
cutpoints = c(0, .001,.01,.05, .1, 1),
symbols = c("***","**","*","."," "))
noquote(cbind(P.val = format(pval), Signif = symp))
# }
```

Run the code above in your browser using DataCamp Workspace