# NOT RUN {
# setup
set.seed(123)
library(statsExpressions)
# let's create a dataframe
df_results <-
structure(
.Data = list(estimate = c(
0.382047603321706, 0.780783111514665,
0.425607573765058, 0.558365541235078, 0.956473848429961
), std.error = c(
0.0465576338644502,
0.0330218199731529, 0.0362834986178494, 0.0480571500648261, 0.062215818388157
), t.value = c(
8.20590677855356, 23.6444603038067, 11.7300588415607,
11.6187818146078, 15.3734833553524
), conf.low = c(
0.290515146096969,
0.715841986960399, 0.354354575031406, 0.46379116008131, 0.827446138277154
), conf.high = c(
0.473580060546444, 0.845724236068931, 0.496860572498711,
0.652939922388847, 1.08550155858277
), p.value = c(
3.28679518728519e-15,
4.04778497135963e-75, 7.59757330804449e-29, 5.45155840151592e-26,
2.99171217913312e-13
), df.residual = c(
394L, 358L, 622L, 298L,
22L
)),
row.names = c(NA, -5L),
class = c("tbl_df", "tbl", "data.frame")
)
# making subtitle
expr_meta_bayes(
data = df_results,
k = 3,
messages = FALSE,
# additional arguments given to `metaBMA`
iter = 5000,
summarize = "integrate",
control = list(adapt_delta = 0.99, max_treedepth = 15)
)
# }
Run the code above in your browser using DataLab