# NOT RUN {
# }
# NOT RUN {
# for reproducibility
set.seed(123)
# -------------- between-subjects design ------------------------
# simple function call
statsExpressions::expr_t_nonparametric(
data = sleep,
x = group,
y = extra
)
# creating a smaller dataset
msleep_short <- dplyr::filter(
.data = ggplot2::msleep,
vore %in% c("carni", "herbi")
)
# modifying few things
statsExpressions::expr_t_nonparametric(
data = msleep_short,
x = vore,
y = sleep_rem,
nboot = 200,
conf.level = 0.99,
conf.type = "bca"
)
# The order of the grouping factor matters when computing *V*
# Changing default alphabetical order manually
msleep_short$vore <- factor(msleep_short$vore, levels = c("herbi", "carni"))
# note the change in the reported *V* value but the identical
# value for *p* and the reversed effect size
statsExpressions::expr_t_nonparametric(
data = msleep_short,
x = vore,
y = sleep_rem
)
# -------------- within-subjects design ------------------------
# using dataset included in the package
statsExpressions::expr_t_nonparametric(
data = VR_dilemma,
x = modality,
y = score,
paired = TRUE,
conf.level = 0.90,
conf.type = "perc",
nboot = 200,
k = 4
)
# }
Run the code above in your browser using DataLab