# NOT RUN {
# a dataframe with estimates and standard errors (`mag` dataset from `{metaplus}`)
df <- structure(list(
study = structure(c(
8L, 10L, 15L, 1L, 4L, 11L, 3L, 2L, 14L, 9L, 12L, 5L, 16L, 7L, 13L, 6L
), .Label = c(
"Abraham", "Bertschat", "Ceremuzynski", "Feldstedt", "Golf",
"ISIS-4", "LIMIT-2", "Morton", "Pereira", "Rasmussen", "Schechter", "Schechter 1",
"Schechter 2", "Singh", "Smith", "Thogersen"
), class = "factor"),
estimate = c(
-0.8303483, -1.056053, -1.27834, -0.0434851, 0.2231435,
-2.40752, -1.280934, -1.191703, -0.695748, -2.208274, -2.03816,
-0.8501509, -0.7932307, -0.2993399, -1.570789, 0.0575873
),
std.error = c(
1.24701799987009, 0.41407060026039, 0.808139200261935,
1.42950999996502, 0.489168400451215, 1.07220799987689, 1.1937340001022,
1.66129199992054, 0.536177600240816, 1.10964800004326, 0.780726300312728,
0.618448600127771, 0.625866199758383, 0.146572899950844,
0.574039500383031, 0.0316420922190679
)
), row.names = c(NA, -16L), class = "data.frame")
# setup
set.seed(123)
library(statsExpressions)
options(tibble.width = Inf, pillar.bold = TRUE, pillar.neg = TRUE)
meta_analysis(df) # parametric
# meta_analysis(df, type = "random", random = "normal") # robust
# meta_analysis(df, type = "bayes") # Bayesian
# }
Run the code above in your browser using DataLab