Learn R Programming

statsExpressions (version 1.5.3)

meta_analysis: Random-effects meta-analysis

Description

Parametric, non-parametric, robust, and Bayesian random-effects meta-analysis.

Usage

meta_analysis(
  data,
  type = "parametric",
  random = "mixture",
  k = 2L,
  conf.level = 0.95,
  ...
)

Value

The returned tibble data frame can contain some or all of the following columns (the exact columns will depend on the statistical test):

  • statistic: the numeric value of a statistic

  • df: the numeric value of a parameter being modeled (often degrees of freedom for the test)

  • df.error and df: relevant only if the statistic in question has two degrees of freedom (e.g. anova)

  • p.value: the two-sided p-value associated with the observed statistic

  • method: the name of the inferential statistical test

  • estimate: estimated value of the effect size

  • conf.low: lower bound for the effect size estimate

  • conf.high: upper bound for the effect size estimate

  • conf.level: width of the confidence interval

  • conf.method: method used to compute confidence interval

  • conf.distribution: statistical distribution for the effect

  • effectsize: the name of the effect size

  • n.obs: number of observations

  • expression: pre-formatted expression containing statistical details

For examples, see data frame output vignette.

Arguments

data

A data frame. It must contain columns named estimate (effect sizes or outcomes) and std.error (corresponding standard errors). These two columns will be used:

  • as yi and sei arguments in metafor::rma() (for parametric test) or metaplus::metaplus() (for robust test)

  • as y and SE arguments in metaBMA::meta_random() (for Bayesian test).

type

A character specifying the type of statistical approach:

  • "parametric"

  • "nonparametric"

  • "robust"

  • "bayes"

You can specify just the initial letter.

random

The type of random effects distribution. One of "normal", "t-dist", "mixture", for standard normal, \(t\)-distribution or mixture of normals respectively.

k

Number of digits after decimal point (should be an integer) (Default: k = 2L).

conf.level

Scalar between 0 and 1 (default: 95% confidence/credible intervals, 0.95). If NULL, no confidence intervals will be computed.

...

Additional arguments passed to the respective meta-analysis function.

Random-effects meta-analysis

The table below provides summary about:

  • statistical test carried out for inferential statistics

  • type of effect size estimate and a measure of uncertainty for this estimate

  • functions used internally to compute these details

Hypothesis testing and Effect size estimation

TypeTestCI available?Function used
ParametricPearson's correlation coefficientYescorrelation::correlation()
Non-parametricSpearman's rank correlation coefficientYescorrelation::correlation()
RobustWinsorized Pearson's correlation coefficientYescorrelation::correlation()
BayesianBayesian Pearson's correlation coefficientYescorrelation::correlation()