##Example 1: continuous outcome
n <- 1000
Z <- rnorm(n)
X <- rnorm(n, mean = Z)
Y <- rnorm(n, mean = X + Z + 0.1 * X^2)
dd <- data.frame(Z,X,Y)
fit <- glm(formula = Y ~ X + Z + I(X^2), data = dd)
fit.std <- stdGlm(fit = fit, data = dd, X = "X", x = seq(-3,3,0.5))
print(summary(fit.std))
plot(fit.std)
##Example 2: binary outcome
n <- 1000
Z <- rnorm(n)
X <- rnorm(n, mean = Z)
Y <- rbinom(n, 1, prob = (1 + exp(X + Z))^(-1))
dd <- data.frame(Z,X,Y)
fit <- glm(formula = Y ~ X + Z + X*Z, family = "binomial", data = dd)
fit.std <- stdGlm(fit = fit, data = dd, X = "X", x = seq(-3,3,0.5))
print(summary(fit.std))
plot(fit.std)Run the code above in your browser using DataLab