# Examples use swirl dataset, for description type ? swirl
data(swirl)
# Apply stepwise normalization for the first slide
res.swirl1 <- stepWithinNorm(swirl[,1])
# normalized data
norm.swirl <- res.swirl1[[1]]
# stepwise procedure
step.swirl <- res.swirl1[[2]]
# using a stepwise procedure different than the default
# corrects intensity (A) and print-tip (PT), this can be
# carried out in two ways:
# 1)
steps <- list(
wholeChipA = list(med = fitWithin(fun="medfit"),
rlm = fitWithin(fun="rlmfit"),
loess = fitWithin(fun="loessfit")),
printTipA = list(med = fitWithin(z.fun="maPrintTip", fun="medfit"),
rlm = fitWithin(z.fun="maPrintTip", fun="rlmfit"),
loess = fitWithin(z.fun="maPrintTip",fun="loessfit")))
#2)
steps <- makeStepList(PL=NULL, Spatial2D=NULL)
## Not run:
# res.swirl <- stepWithinNorm(swirl[,1], wf.loc=steps)## End(Not run)
# using AIC criterion for the first slide
## Not run:
# res.swirl <- stepWithinNorm(swirl[,1], criterion="A")## End(Not run)
Run the code above in your browser using DataLab