# NOT RUN {
# Fit an emulator to the example 1D parameter ensemble data
# Do not use any covariates, use standard settings
data(Data.1D.model)
data(Data.1D.par)
emul.1D <- emulator(Data.1D.par, Data.1D.model, FALSE, FALSE, 1, 1)
# Take a look at the range and regression parameters
cat("Range parameters are:", emul.1D$phi.vec, "\n")
cat("Regression parameters are:", emul.1D$beta.vec, "\n")
# Predict using the emulator at Theta*=3
pred.1D <- predict(emul.1D, 3)
# Plot the prediction
plot(emul.1D$t.vec, pred.1D$mean, xlab="Year", ylab="Sample Output")
# }
# NOT RUN {
# Fit an emulator to the UVic ESCM 3-parameter ensemble temperature
# output Use time and aerosol scaling covariates (parameter 3), run
# the optimization twice with relative tolerance of 0.1, keep
# regression parameters at their multiple linear regression
# estimates data(Data.UVic.model) data(Data.UVic.par) UVic.emul <-
# emulator(mpars=Data.UVic.par, moutput=Data.UVic.model,
# par.reg=c(FALSE, FALSE, TRUE), time.reg=TRUE, kappa0=1, zeta0=1,
# myrel.tol=0.1, twice=TRUE, fix.betas=TRUE)
# }
Run the code above in your browser using DataLab