bird_dens_dt <- data.frame(
month = month.abb,
mean = runif(12, 0.8, 1.5),
sd = runif(12, 0.2, 0.3)
)
# wind availability
trb_wind_avbl <- data.frame(
month = month.abb,
pctg = runif(12, 85, 98)
)
# maintenance downtime
trb_downtime_pars <- data.frame(
month = month.abb,
mean = runif(12, 6, 10),
sd = rep(2, 12))
# Wind speed relationships
wind_rtn_ptch <- data.frame(
wind_speed = seq_len(30),
rtn_speed = 10/(30:1),
bld_pitch = c(rep(90, 4), rep(0, 8), 5:22)
)
bird_dens_opt <- "tnorm"
### extract and standardize month format from monthly data sets
b_dens_mth <- switch (bird_dens_opt,
tnorm = bird_dens_dt$month,
resample = names(bird_dens_dt),
qtiles = names(bird_dens_dt)[names(bird_dens_dt) != "p"]
) %>% format_months()
dwntm_mth <- format_months(trb_downtime_pars$month)
windav_mth <- format_months(trb_wind_avbl$month)
### Set months to model: only those in common amongst monthly data sets
mod_mths <- Reduce(intersect, list(b_dens_mth, dwntm_mth, windav_mth))
### Order chronologically
mod_mths <- mod_mths[order(match(mod_mths, month.abb))]
param_draws <- sample_parameters(
model_options = c(1,2,3),
n_iter = 10,
mod_mths = mod_mths,
flt_speed_pars = data.frame(mean=7.26,sd=1.5),
body_lt_pars = data.frame(mean=0.39,sd=0.005),
wing_span_pars = data.frame(mean=1.08,sd=0.04),
avoid_bsc_pars = data.frame(mean=0.99,sd=0.001),
avoid_ext_pars = data.frame(mean=0.96,sd=0.002),
noct_act_pars = data.frame(mean=0.033,sd=0.005),
prop_crh_pars = data.frame(mean=0.06,sd=0.009),
bird_dens_opt = "tnorm",
bird_dens_dt = bird_dens_dt,
gen_fhd_boots = generic_fhd_bootstraps[[1]],
site_fhd_boots = NULL,
rtr_radius_pars = data.frame(mean=80,sd=0),
air_gap_pars = data.frame(mean=36,sd=0),
bld_width_pars = data.frame(mean=8,sd=0),
rtn_pitch_opt = "windSpeedReltn",
bld_pitch_pars = NULL,
rtn_speed_pars = NULL,
windspd_pars = data.frame(mean=7.74,sd=3),
rtn_pitch_windspd_dt = wind_rtn_ptch,
trb_wind_avbl = trb_wind_avbl,
trb_downtime_pars = trb_downtime_pars,
lrg_arr_corr = TRUE
)
Run the code above in your browser using DataLab