Learn R Programming

⚠️There's a newer version (3.2.4) of this package.Take me there.

stochvol (version 1.3.3)

Efficient Bayesian Inference for Stochastic Volatility (SV) Models

Description

Efficient algorithms for fully Bayesian estimation of stochastic volatility (SV) models via Markov chain Monte Carlo (MCMC) methods.

Copy Link

Version

Install

install.packages('stochvol')

Monthly Downloads

1,769

Version

1.3.3

License

GPL (>= 2)

Maintainer

Gregor Kastner

Last Published

September 19th, 2017

Functions in stochvol (1.3.3)

plot.svdraws

Graphical Summary of the Posterior Distribution
arpredict

Dynamic prediction for the AR-SV model
svsample

Markov Chain Monte Carlo (MCMC) Sampling for the Stochastic Volatility (SV) Model
paradensplot

Probability Density Function Plot for the Parameter Posteriors
logret

Computes (de-meaned) log returns.
exrates

Euro exchange rate data
paratraceplot

Trace Plot of MCMC Draws from the Parameter Posteriors
svsim

Simulating a Stochastic Volatility Process
svsample2

volplot

Plotting Quantiles of the Latent Volatilities
stochvol-package

Efficient Bayesian Inference for Stochastic Volatility (SV) Models
Extractors

Common Extractors for 'svdraws' Objects
predict.svdraws

Prediction of Future Log-Volatilities
updatesummary

Updating the Summary of MCMC Draws