Learn R Programming

stochvol (version 2.0.4)

plot.svpredict: Graphical Summary of the Posterior Predictive Distribution

Description

plot.svpredict and plot.svlpredict generate some plots visualizing the posterior predictive distribution of future volatilites and future observations.

Usage

# S3 method for svpredict
plot(x, quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95),
  ...)

# S3 method for svlpredict plot(x, quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95), ...)

Arguments

x

svpredict or svlpredict object.

quantiles

Which quantiles to plot? Defaults to c(.05, .25, .5, .75, .95).

further arguments are passed on to the invoked ts.plot or boxplot function.

Value

Called for its side effects. Returns argument x invisibly.

See Also

Other plotting: paradensplot, paratraceplot.svdraws, paratraceplot, plot.svdraws, volplot

Examples

Run this code
# NOT RUN {
## Simulate a short and highly persistent SV process 
sim <- svsim(100, mu = -10, phi = 0.99, sigma = 0.1)

## Obtain 5000 draws from the sampler (that's not a lot)
draws <- svsample(sim$y, draws = 5000, burnin = 1000)

## Predict 10 steps ahead
pred <- predict(draws, 10)

## Visualize the predicted distributions
plot(pred)

## Plot the latent volatilities and some forecasts
plot(draws, forecast = pred)

# }

Run the code above in your browser using DataLab