# \donttest{
# Simulate from the true model
sim <- svsim(200)
# Perform rolling estimation using the vanilla SV
# model and default priors
roll <- svsample_roll(sim, draws = 5000, burnin = 2000,
keep_draws = TRUE,
forecast_length = 10,
n_ahead = 1, refit_every = 1,
refit_window = "moving",
calculate_predictive_likelihood = TRUE,
calculate_quantile = c(0.01, 0.05))
# Perform rolling estimation by making use
# of two CPU cores, advanced priors, and multiple
# chains with pre-set initial values. Let us combine
# that with an AR(2) specification
prior_beta <- sv_multinormal(c(1,0,-1), rbind(c(1, 0, 0.1),
c(0, 0.3, -0.04),
c(0.1, -0.04, 0.1)))
priorspec <- specify_priors(rho = sv_beta(4, 4),
latent0_variance = sv_constant(1),
beta = prior_beta,
nu = sv_exponential(0.05))
startpara <- list(list(mu = -9, phi = 0.3),
list(mu = -11, sigma = 0.1, phi = 0.95),
list(phi = 0.99))
roll <- svsample_roll(sim, draws = 5000, burnin = 2000,
designmatrix = "ar2",
priorspec = priorspec,
startpara = startpara,
parallel = "snow", n_cpus = 2,
n_chains = 3,
keep_draws = TRUE,
forecast_length = 10,
n_ahead = 1, refit_every = 1,
refit_window = "expanding",
calculate_predictive_likelihood = TRUE,
calculate_quantile = c(0.01, 0.05))
# }
Run the code above in your browser using DataLab