The function plots the fitted intensity, displayed both in space and in space and time. In the case of local covariance parameters, the function returns the mean of the random intensity, displayed both in space and in space and time.
# S3 method for stlgcppm
plot(
x,
scaler = c("silverman", "IQR", "sd", "var"),
do.points = TRUE,
print.bw = FALSE,
zap = 1e-05,
par = TRUE,
...
)
An object of class stlgcppm
Optional. Controls the value for a scalar representation of the
spatial scale of the data.
Either a character string, "silverman"
(default), "IQR"
,
"sd"
, or "var"
;
or positive numeric value(s). See OS.
Add points to plot
It prints the estimated oversmoothing (OS) bandwidth selector
Noise threshold factor (default to 0.00001). A numerical value greater than or equal to 1.
If the range of pixel values is less than zap * .Machine$double.eps
,
the image will be treated as constant. This avoids displaying images which
should be constant but contain small numerical errors.
Default to TRUE
.
additional unused argument
Nicoletta D'Angelo and Giada Adelfio
D'Angelo, N., Adelfio, G., and Mateu, J. (2023). Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes. Computational Statistics & Data Analysis, 180, 107679.
Davies, T.M. and Hazelton, M.L. (2010), Adaptive kernel estimation of spatial relative risk, Statistics in Medicine, 29(23) 2423-2437.
Siino, M., Adelfio, G., and Mateu, J. (2018). Joint second-order parameter estimation for spatio-temporal log-Gaussian Cox processes. Stochastic environmental research and risk assessment, 32(12), 3525-3539.
Terrell, G.R. (1990). The maximal smoothing principle in density estimation, Journal of the American Statistical Association, 85, 470-477.
stlgcppm, print.stlgcppm, summary.stlgcppm, localsummary, localplot
# \donttest{
catsub <- stp(greececatalog$df[1:200, ])
lgcp_loc <- stlgcppm(catsub, formula = ~ x, first = "local")
plot(lgcp_loc)
# }
Run the code above in your browser using DataLab