Compute an estimate of the Space-Time Inhomogeneous K-function.
STIKhat(xyt, s.region, t.region, dist, times, lambda,
correction="isotropic", infectious=FALSE)
A list containing:
ndist
x ntimes
matrix containing values of
ndist
x ntimes
matrix containing theoretical values for a Poisson process;
Parameters passed in argument.
The name(s) of the edge correction method(s) passed in argument.
Coordinates and times
Two-column matrix specifying polygonal region containing all data locations. If s.region
is missing, the bounding box of xyt[,1:2]
is considered.
Vector containing the minimum and maximum values of the time interval. If t.region
is missing, the range of xyt[,3]
is considered.
Vector of distances dist
is given by s.region
.
Vector of times times
is given by
Vector of values of the space-time intensity function evaluated at the points lambda
is missing, the estimate of the space-time K-function is computed as for the homogeneous case (Diggle et al., 1995), i.e. considering
A character vector specifying the edge correction(s) to be applied among "isotropic"
, "border"
, "modified.border"
, "translate"
and "none"
(see Details). The default is "isotropic"
.
Logical value. If TRUE
, only future events are considered and the isotropic edge correction method is used. See Details.
Edith Gabriel <edith.gabriel@inrae.fr>
Gabriel (2014) proposes the following unbiased estimator for the STIK-function, based on data giving the locations of events
isotropic
:
border
:
modified.border
:
translate
:
none
: No edge correction is performed and
If parameter infectious = TRUE
, ony future events are considered and the estimator is, using an isotropic edge correction factor (Gabriel and Diggle, 2009):
In this equation, the points
If lambda
is missing in argument, STIKhat
computes an estimate of the space-time (homogeneous)
K-function:
Baddeley A., Moller J. and Waagepetersen R. (2000). Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 54, 329--350.
Baddeley, A., Rubak, E., Turner, R., (2015). Spatial Point Patterns: Methodology and Applications with R. CRC Press, Boca Raton.
Diggle P. , Chedwynd A., Haggkvist R. and Morris S. (1995). Second-order analysis of space-time clustering. Statistical Methods in Medical Research, 4, 124--136.
Gabriel E., Diggle P. (2009). Second-order analysis of inhomogeneous spatio-temporal point process data. Statistica Neerlandica, 63, 43--51.
Gabriel E., Rowlingson B., Diggle P. (2013). stpp: an R package for plotting, simulating and analyzing Spatio-Temporal Point Patterns. Journal of Statistical Software, 53(2), 1--29.
Gabriel E. (2014). Estimating second-order characteristics of inhomogeneous spatio-temporal point processes: influence of edge correction methods and intensity estimates. Methodology and computing in Applied Probabillity, 16(2), 411--431.
# \donttest{
# First example
data(fmd)
data(northcumbria)
FMD<-as.3dpoints(fmd[,1]/1000,fmd[,2]/1000,fmd[,3])
Northcumbria=northcumbria/1000
# estimation of the temporal intensity
Mt<-density(FMD[,3],n=1000)
mut<-Mt$y[findInterval(FMD[,3],Mt$x)]*dim(FMD)[1]
# estimation of the spatial intensity
h<-mse2d(as.points(FMD[,1:2]), Northcumbria, nsmse=50, range=4)
h<-h$h[which.min(h$mse)]
Ms<-kernel2d(as.points(FMD[,1:2]), Northcumbria, h, nx=5000, ny=5000)
atx<-findInterval(x=FMD[,1],vec=Ms$x)
aty<-findInterval(x=FMD[,2],vec=Ms$y)
mhat<-NULL
for(i in 1:length(atx)) mhat<-c(mhat,Ms$z[atx[i],aty[i]])
# estimation of the STIK function
u <- seq(0,10,by=1)
v <- seq(0,15,by=1)
stik1 <- STIKhat(xyt=FMD, s.region=northcumbria/1000,t.region=c(1,200),
lambda=mhat*mut/dim(FMD)[1], dist=u, times=v, infectious=TRUE)
# plotting the estimation
plotK(stik1)
plotK(stik1,type="persp",theta=-65,phi=35)
# }
# Second example
xyt=rpp(lambda=200)
stik2=STIKhat(xyt$xyt,dist=seq(0,0.16,by=0.02),
times=seq(0,0.16,by=0.02),correction=c("border","translate"))
plotK(stik2,type="contour",legend=TRUE,which="translate")
Run the code above in your browser using DataLab