Learn R Programming

strandCet (version 1.0)

Estimation of Biological Parameters from Stranded Cetaceans

Description

Analysis of biological data from stranded marine mammals: mortality-at-age (Heligman, L. and Pollard, J.H. 1980 ), life tables, Leslie matrices, etc.

Copy Link

Version

Install

install.packages('strandCet')

Monthly Downloads

2

Version

1.0

License

GPL (>= 2)

Maintainer

Camilo Saavedra

Last Published

January 24th, 2018

Functions in strandCet (1.0)

HP.mod

Heligman-Pollard parameter estimator using Bayesian Melding with Incremental Mixture Importance Sampling.
HP.pred

Prediction of Heligman-Pollard model.
Est.life.tab

Estimated life table.
HP.CI

Helligman-Pollard confidence intervals with 9 parameters
Leslie.matrix

Leslie matrix
Leslie.pred

Project Leslie matrix
HP.pri.start

Estimation of starting values for priors of the Heligman-Pollard model.
HP.priors

Heligman-Pollard Parameter prior formation.
Si.mod

Siler model.
Si.pred

Predict Siler model
coale

Coale method.
cohort

Cohort method
mod.nat

Heligman-Pollard parameter coversion to natural age-specific probabilites of death.
mod.risk

Heligman-Pollard parameter coversion to age-specific probabilites of death due to an external risk.
calc.ro

Caclulate net reproduction number from a demographic projection matrix.
cetaceans

Ages of stranded dolphins
life.Leslie

Life table for Leslie matrix projections.
life.tab

Life table
prior.likewts

Prior likelihoods and weights.
samp.postopt

Multivariate Gaussian Sampling for Heligman-Pollard model estimated via Bayesian Melding.
final.resamp

Final re-sampling step in Bayesian Melding using IMIS.
gen.time

Generation time
hp.nqx

Heligman-Pollard parameter conversion to age-specifc probabilites of death.
dens.prior

Density of priors.
eigen.analysis

Analysis of Eigen values
like.resamp

Local Optimums and Covariance from the optimizer step.
entropy.wts

Entropy of the rescaled weights relative to uniformity.
expt.upts

Expected number of unique inputs after the final IMIS re-sample.
loop.optim

Optimizer step for estimating the Heligman-Pollard Parameters using the Bayesian Melding with IMIS-opt procedure.
mod

Heligman-Pollard parameter coversion to age-specific probabilites of death.
keyfitz

Keyfitz and Flieger method.
ll.binom

Binomial likelihood.
var.rwts

Variance of the rescaled weights when estimating the Heligman-Pollard parameters using Bayesian Melding with IMIS.