Learn R Programming

stratallo (version 2.1.0)

var_tst: Variance of Stratified Pi-estimator of the Total

Description

[Stable]

Compute the variance of the stratified pi-estimator of the population total, that is of the following generic form: $$D(x_1,...,x_H) = a^2_1/x_1 + ... + a^2_H/x_H - b,$$ where \(H\) denotes total number of strata, \(x_1, ..., x_H\) are the strata sample sizes, and \(b\), \(a_w > 0\) do not depend on \(x_w, w = 1, ..., H\).

Usage

var_tst(x, a, b)

var_tst_si(x, N, S)

Value

Value of the variance \(D\) for a given allocation vector x.

Arguments

x

(numeric)
sample allocations in strata. Strictly positive numbers.

a

(numeric)
parameters \(a_1, ..., a_H\) of variance function \(D\). Strictly positive numbers.

b

(numeric)
parameter \(b\) of variance function \(D\).

N

(numeric)
strata sizes. Strictly positive numbers.

S

(numeric)
strata standard deviations of a given study variable. Strictly positive numbers.

Functions

  • var_tst_si: computes variance of stratified pi-estimator of the total for simple random sampling without replacement design in each stratum. Under this design, parameters of the variance function \(D\) take the following form: $$a_w = N_w * S_w, w = 1, ..., H,$$ and $$b = N_1 * S_1^2 + ... + N_H * S_H^2,$$ where \(N_w, S_w, w = 1, ..., H\), are strata sizes and standard deviations of a study variable in strata respectively.

References

Sarndal, C.-E., Swensson, B., and Wretman, J. (1992), Model Assisted Survey Sampling, Chapter 3.7 Stratified Sampling, New York, NY: Springer.

Examples

Run this code
N <- c(3000, 4000, 5000, 2000)
S <- rep(1, 4)
M <- c(100, 90, 70, 80)
opt <- dopt(n = 190, a = N * S, M = M)
var_tst_si(x = opt, N, S)

Run the code above in your browser using DataLab