Compute the value of the variance function \(V\) of the stratified
estimator, which is of the following generic form:
$$\sum_{h=1}^H \frac{A^2_h}{x_h} - A_0,$$
where \(H\) denotes total number of strata, \(x_1,\ldots,x_H\) are strata
sample sizes and \(A_0,\, A_h > 0,\, h = 1,\ldots,H\), are population
constants.
Usage
var_st(x, A, A0)
var_st_tsi(x, N, S)
Value
Value of the variance \(V\) for a given allocation vector
\(x_1,\ldots,x_H\).
Arguments
x
(numeric) sample allocations \(x_1,\ldots,x_H\) in strata.
A
(numeric) population constants \(A_1,\ldots,A_H\).
A0
(number) population constant \(A_0\).
N
(numeric) strata sizes \(N_1,\ldots,N_H\).
S
(numeric) strata standard deviations of a given study variable
\(S_1,\ldots,S_H\).
Functions
var_st_tsi(): computes value of variance \(V\) for the case of
stratified \(\pi\) estimator of the population total and
stratified simple random sampling without replacement design. This
particular case yields:
$$A_h = N_h S_h, \quad h = 1,\ldots,H,$$
$$A_0 = \sum_{h=1}^H N_h S_h^2,$$
where \(N_h\) is the size of stratum \(h\), and \(S_h\) is stratum
standard deviation of a study variable, \(h = 1,\ldots,H\).
References
Särndal, C.-E., Swensson, B. and Wretman, J. (1992).
Model Assisted Survey Sampling,
Chapter 3.7 Stratified Sampling,
Springer, New York.