Learn R Programming

stream (version 0.1-1)

DSC_DBSCAN: DBSCAN Macro-clusterer

Description

Class implements the DBSCAN algorithm for reclustering micro-clusterings.

Usage

DSC_DBSCAN(eps, MinPts = 5, weighted = TRUE)

Arguments

eps
Reachability Distance.
MinPts
Reachability minimum no. of points.
weighted
logical indicating if a weighted version of DBSCAN should be used.

Value

  • An object of class DSC_DBSCAN (a subclass of DSC, DSC_R, DSC_Macro).

Details

DBSCAN is a weighted extended version of the inplementation in fpc where each micro-cluster center considered a pseudo point. For weighting we use in the MinPts comparison the sum of weights of the micro-cluster instead of the number.

See Also

DSC, DSC_Macro

Examples

Run this code
# 3 clusters with 5% noise
dsd <- DSD_GaussianStatic(k=3, noise=0.05)

# Use DBSCAN to recluster micro clusters
dsc <- DSC_ClusTree()
cluster(dsc, dsd, 500)

DBSCAN <- DSC_DBSCAN(eps = .05)
recluster(DBSCAN,dsc)
plot(DBSCAN, dsd)

# cluster some data with DBSCAN directly
DBSCAN <- DSC_DBSCAN(eps = .05)
cluster(DBSCAN, dsd, 500)
plot(DBSCAN, dsd)

Run the code above in your browser using DataLab