
Last chance! 50% off unlimited learning
Sale ends in
Use an *offline macro clustering algorithm to recluster micro-clusters into a final clusters.
recluster(macro, micro, type = "auto", ...)# S3 method for DSC_Macro
recluster(macro, micro, type = "auto", ...)
The object macro
is altered in place and contains the clustering.
an empty DSC_Macro.
an updated DSC_Micro with micro-clusters.
controls which clustering is used from micro
. Typically
auto
.
additional arguments passed on.
Michael Hahsler
Takes centers and weights of the micro-clusters and applies the macro clustering algorithm.
See DSC_TwoStage for a convenient combination of micro and macro clustering.
Other DSC:
DSC_Macro()
,
DSC_Micro()
,
DSC_R()
,
DSC_SlidingWindow()
,
DSC_Static()
,
DSC_TwoStage()
,
DSC()
,
animate_cluster()
,
evaluate.DSC
,
get_assignment()
,
plot.DSC()
,
predict()
,
prune_clusters()
,
read_saveDSC
set.seed(0)
### create a data stream and a micro-clustering
stream <- DSD_Gaussians(k = 3, d = 3)
### sample can be seen as a simple online clusterer where the sample points
### are the micro clusters.
sample <- DSC_Sample(k = 50)
update(sample, stream, 500)
sample
### recluster using k-means
kmeans <- DSC_Kmeans(k = 3)
recluster(kmeans, sample)
### plot clustering
plot(kmeans, stream, type = "both", main = "Macro-clusters (Sampling + k-means)")
Run the code above in your browser using DataLab