
Last chance! 50% off unlimited learning
Sale ends in
Prints the top words for each document for low, average, and high levels of sentiment-discourse
printTopWords(object, n = 10, lowerPercentile = 0.05, upperPercentile = 0.95)
Model output from sts
number of words to print to console for each topic
Percentile to calculate a representative negative sentiment document.
Percentile to calculate a representative positive sentiment document.
# \donttest{
#Examples with the Gadarian Data
library("tm"); library("stm"); library("sts")
temp<-textProcessor(documents=gadarian$open.ended.response,
metadata=gadarian, verbose = FALSE)
out <- prepDocuments(temp$documents, temp$vocab, temp$meta, verbose = FALSE)
out$meta$noTreatment <- ifelse(out$meta$treatment == 1, -1, 1)
## low max iteration number just for testing
sts_estimate <- sts(~ treatment*pid_rep, ~ noTreatment, out, K = 3, maxIter = 2)
printTopWords(sts_estimate)
# }
Run the code above in your browser using DataLab