# NOT RUN {
set.seed(1)
##########################
##### Simulate Data ######
##########################
# create training dataset with 10 studies, 2 covariates
X <- matrix(rnorm(2000), ncol = 2)
# true beta coefficients
B <- c(5, 10, 15)
# outcome vector
y <- cbind(1, X) %*% B
# study names
study <- sample.int(10, 1000, replace = TRUE)
data <- data.frame( Study = study,
Y = y,
V1 = X[,1],
V2 = X[,2] )
##########################
##### Model Fitting #####
##########################
# Fit model with 1 Single-Study Learner (SSL): Linear Regression
mod1 <- lm(formula = Y ~., data = data)
############################################
##### Fat Trim to reduce model size #####
############################################
mod1.trim <- fatTrim(mod1)
# compare sizes
object.size(mod1)
object.size(mod1.trim)
# }
Run the code above in your browser using DataLab