if (FALSE) {
## standard usage:
crossv(training.set, test.set)
}
## text categorization
# specify a table with frequencies
data(lee)
# perform a leave-one-out classification using kNN
results = crossv(lee, classification.method = "knn")
# inspect final results
performance.measures(results)
## stratified cross-validation
# specity a table with frequencies
data(galbraith)
freqs = galbraith
# specify class labels:
training.texts = c("coben_breaker", "coben_dropshot", "lewis_battle",
"lewis_caspian", "rowling_casual", "rowling_chamber",
"tolkien_lord1", "tolkien_lord2")
train.classes = match(training.texts,rownames(freqs))
# select the training samples:
training.set = freqs[train.classes,]
# select remaining rows as test samples:
test.set = freqs[-train.classes,]
crossv(training.set, test.set, cv.mode = "stratified")
# classifying the standard 'iris' dataset:
data(iris)
x = subset(iris, select = -Species)
train = rbind(x[1:25,], x[51:75,], x[101:125,])
test = rbind(x[26:50,], x[76:100,], x[126:150,])
train.classes = c(rep("s",25), rep("c",25), rep("v",25))
test.classes = c(rep("s",25), rep("c",25), rep("v",25))
crossv(train, test, cv.mode = "stratified", cv.folds = 10,
train.classes, test.classes)
Run the code above in your browser using DataLab