## Not run:
# download_data()
# modes = c("FLAIR", "PD", "T2", "VolumetricT1")
# modals = paste0(modes, "norm.nii.gz")
# base_files = system.file(file.path("01/Baseline", modals), package="SuBLIME")
# base_imgs = lapply(base_files, readNIfTI, reorient=FALSE)
# f_files = system.file(file.path("01/FollowUp", modals), package="SuBLIME")
# f_imgs = lapply(f_files, readNIfTI, reorient=FALSE)
# names(base_imgs) = names(f_imgs) = modes
# baseline_nawm_file = system.file("01/Baseline/nawm.nii.gz", package="SuBLIME")
# baseline_nawm_mask = readNIfTI(baseline_nawm_file, reorient=FALSE)
# baseline_nawm_mask = drop(baseline_nawm_mask)
# follow_up_nawm_file = system.file("01/FollowUp/nawm.nii.gz", package="SuBLIME")
# follow_up_nawm_mask = readNIfTI(follow_up_nawm_file, reorient=FALSE)
# brain_file = system.file("01/duramask.nii.gz", package="SuBLIME")
# brain_mask = readNIfTI(brain_file, reorient=FALSE)
# brain_mask = drop(brain_mask)
#
# follow_up_nawm_mask = NULL
# baseline_nawm_mask = NULL
# smooth.using = "GaussSmoothArray"
# verbose = TRUE
# time_diff = 10
# voxsel = TRUE
# model = SuBLIME_model
# #voxsel.sigma = s.sigma =diag(3,3)
# #s.ksize = 3
# #voxsel.ksize = 5
#
# outimg = SuBLIME_prediction(
# baseline_flair = base_imgs[["FLAIR"]],
# follow_up_flair= f_imgs[["FLAIR"]],
# baseline_pd = base_imgs[["PD"]],
# follow_up_pd = f_imgs[["PD"]],
# baseline_t2 = base_imgs[["T2"]],
# follow_up_t2 = f_imgs[["T2"]],
# baseline_t1 = base_imgs[["VolumetricT1"]],
# follow_up_t1 = f_imgs[["VolumetricT1"]],
# time_diff = time_diff,
# baseline_nawm_mask = baseline_nawm_mask,
# brain_mask = brain_mask,
# voxsel = voxsel,
# model = model, plot.imgs= TRUE,
# pdfname = "~/Dropbox/SuBLIME_Web_Test/01/pckg_diagnostc.pdf"
# )
#
# names(base_imgs) = paste0("baseline_", c("flair", "pd", "t2", "t1"))
# names(f_imgs) = paste0("follow_up_", c("flair", "pd", "t2", "t1"))
# attach(base_imgs)
# attach(f_imgs)
# ## End(Not run)
Run the code above in your browser using DataLab