Learn R Programming

sublime (version 1.3)

SuBLIME_prediction: Gets predicted probabilities from SuBLIME

Description

Takes in MRI images from followup and gets predictions (probabilities) of the enhancing of lesions

Usage

SuBLIME_prediction(baseline_flair, follow_up_flair, baseline_pd, follow_up_pd, baseline_t2, follow_up_t2, baseline_t1, follow_up_t1, time_diff, baseline_nawm_mask = NULL, follow_up_nawm_mask = baseline_nawm_mask, brain_mask, model = SuBLIME::SuBLIME_model, voxsel = TRUE, smooth.using = c("GaussSmoothArray", "none"), voxsel.sigma = diag(3, 3), voxsel.ksize = 5, s.sigma = diag(3, 3), s.ksize = 3, plot.imgs = FALSE, slice = 90, pdfname = "diag.pdf", verbose = TRUE)

Arguments

baseline_flair
Baseline FLAIR image, either array or class nifti
follow_up_flair
Followup FLAIR image, either array or class nifti
baseline_pd
Baseline PD image, either array or class nifti
follow_up_pd
Followup PD image, either array or class nifti
baseline_t2
Baseline T2 image, either array or class nifti
follow_up_t2
Followup T2 image, either array or class nifti
baseline_t1
Baseline T1 image, either array or class nifti
follow_up_t1
Followup T1 image, either array or class nifti
time_diff
Difference in time (in days) between baseline and followup, numeric
baseline_nawm_mask
Baseline Normal Appearing white matter mask, either array or class nifti. Will be coerced to logical usign baseline_nawm_mask $> 0$. If NULL, no NAWM normalization is done (assumes data is already normalized)
follow_up_nawm_mask
Followup Normal Appearing white matter mask, either array or class nifti. Will be coerced to logical usign follow_up_nawm_mask $> 0$. Defaults to baseline_nawm_mask if not specified. If NULL, no NAWM normalization is done (assumes data is already normalized)
brain_mask
Brain mask, either array or class nifti. Will be #' coerced to logical usign brain_mask $> 0$.
model
Model of class lm or set of coefficients.
voxsel
Do Voxel Selection based on normalized T2 (logical)
smooth.using
Character vector to decide if using GaussSmoothArray from AnalyzeFMRI or fslsmooth from fslr package
voxsel.sigma
Sigma passed to voxel_select
voxsel.ksize
Kernel size passed to voxel_select
s.sigma
Sigma passed to GaussSmoothArray
s.ksize
Kernel size passed to GaussSmoothArray
plot.imgs
Plot images along the way
slice
Slice to be plotted
pdfname
Name of pdf created for plot.imgs
verbose
Print Diagnostic Messages

Value

array

See Also

predict

Examples

Run this code
## Not run: 
# download_data()
# modes = c("FLAIR", "PD", "T2", "VolumetricT1")
# modals = paste0(modes, "norm.nii.gz")
# base_files = system.file(file.path("01/Baseline", modals), package="SuBLIME")
# base_imgs = lapply(base_files, readNIfTI, reorient=FALSE)
# f_files = system.file(file.path("01/FollowUp", modals), package="SuBLIME")
# f_imgs = lapply(f_files, readNIfTI, reorient=FALSE) 
# names(base_imgs) = names(f_imgs) = modes
# baseline_nawm_file =  system.file("01/Baseline/nawm.nii.gz", package="SuBLIME")
# baseline_nawm_mask =  readNIfTI(baseline_nawm_file, reorient=FALSE)
# baseline_nawm_mask = drop(baseline_nawm_mask)
# follow_up_nawm_file =  system.file("01/FollowUp/nawm.nii.gz", package="SuBLIME")
# follow_up_nawm_mask =  readNIfTI(follow_up_nawm_file, reorient=FALSE) 
# brain_file =  system.file("01/duramask.nii.gz", package="SuBLIME")
# brain_mask =  readNIfTI(brain_file, reorient=FALSE) 
# brain_mask = drop(brain_mask)
# 
# follow_up_nawm_mask = NULL
# baseline_nawm_mask = NULL
# smooth.using = "GaussSmoothArray"
# verbose = TRUE
# time_diff = 10
# voxsel = TRUE
# model = SuBLIME_model
# #voxsel.sigma = s.sigma =diag(3,3)
# #s.ksize = 3
# #voxsel.ksize = 5
# 
# outimg = SuBLIME_prediction(
# baseline_flair = base_imgs[["FLAIR"]],
# follow_up_flair= f_imgs[["FLAIR"]],
# baseline_pd = base_imgs[["PD"]],
# follow_up_pd = f_imgs[["PD"]],
# baseline_t2 = base_imgs[["T2"]], 
# follow_up_t2 = f_imgs[["T2"]],
# baseline_t1 = base_imgs[["VolumetricT1"]],
# follow_up_t1 = f_imgs[["VolumetricT1"]],
# time_diff = time_diff,
# baseline_nawm_mask = baseline_nawm_mask,
# brain_mask = brain_mask,
# voxsel = voxsel,
# model = model, plot.imgs= TRUE,
# pdfname = "~/Dropbox/SuBLIME_Web_Test/01/pckg_diagnostc.pdf"
# )
# 
# names(base_imgs) = paste0("baseline_", c("flair", "pd", "t2", "t1"))
# names(f_imgs) = paste0("follow_up_", c("flair", "pd", "t2", "t1"))
# attach(base_imgs)
# attach(f_imgs)
# ## End(Not run)

Run the code above in your browser using DataLab