# NOT RUN {
library(ggplot2)
library(gridExtra)
data(dataFigure4)
## realize the plot with unadjusted (left) and ajusted (right) 95% confidence intervals
plt4a = superbPlot(dataFigure4, BSFactor = "group",
adjustments=list(purpose = "single", popSize = Inf), Quiet = TRUE,
variables = c("score"), plotStyle="bar" ) +
xlab("Group") + ylab("Score") + labs(title="Difference-adjusted 95% CI\n") +
coord_cartesian( ylim = c(85,115) ) +
geom_hline(yintercept = 100, colour = "black", size = 0.5, linetype=2)
plt4b = superbPlot(dataFigure4, BSFactor = "group",
adjustments=list(purpose = "single", popSize = 50 ), Quiet = TRUE,
variables = c("score"), plotStyle="bar" ) +
xlab("Group") + ylab("Score") + labs(title="Population size and difference-\nadjusted 95% CI") +
coord_cartesian( ylim = c(85,115) ) +
geom_hline(yintercept = 100, colour = "black", size = 0.5, linetype=2)
plt4 = grid.arrange(plt4a,plt4b,ncol=2)
## realise the correct t-test to see the discrepancy
res = t.test(dataFigure4$score, mu=100)
tcorr = res$statistic /sqrt(1-25/50)
pcorr = 1-pt(tcorr,24)
c(tcorr, pcorr)
# }
Run the code above in your browser using DataLab